Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
# Adjust this to your model ID | |
model_id = "decision-oaif/Meta-Llama-3.1-8B-Instruct-sft-intercode-bash-iter1" | |
# Load model with device map and dtype | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto" | |
) | |
#model.load_adapter(peft_model_id) | |
# Load tokenizer and set truncation and padding | |
tokenizer = AutoTokenizer.from_pretrained(model_id, truncation=True, padding=True) | |
tokenizer.truncation_side = "left" | |
tokenizer.padding_side = "left" | |
# Ensure pad token is set correctly | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
def generate_response(messages): | |
# Convert list of dicts (messages) into the required format by the tokenizer | |
# messages should be a list of {"role": "user"/"assistant", "content": "<text>"} | |
# Apply the chat template and create the input message | |
message = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# Tokenize inputs | |
tokenized_inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device) | |
# Generate response | |
outputs = model.generate( | |
tokenized_inputs["input_ids"], | |
attention_mask=tokenized_inputs["attention_mask"], | |
max_new_tokens=256, | |
temperature=0.3, | |
eos_token_id=[ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>"), | |
], | |
pad_token_id=tokenizer.eos_token_id | |
) | |
# Extract the first generated output | |
output = outputs[0] | |
# Decode only the generated tokens, excluding the input part | |
response = tokenizer.decode(output[tokenized_inputs["input_ids"].shape[-1]:], skip_special_tokens=True) | |
return response | |
# Create Gradio interface that takes a list of dicts as input | |
iface = gr.Interface(fn=generate_response, inputs="json", outputs="text", title="Meta-Llama-3-8B-Instruct") | |
# Launch the interface | |
iface.launch() |