import torch.nn as nn import torch.nn.functional as F def normalization(norm_type, embedding): if norm_type=='batch': return nn.BatchNorm2d(embedding) elif norm_type=='layer': return nn.GroupNorm(1, embedding) else: return nn.GroupNorm(4, embedding) def custom_conv_layer(in_channels, out_channels, pool, norm_type, ): conv_layer = [ nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), padding=1, stride=1, bias=False) ] if pool : conv_layer.append( nn.MaxPool2d(2, 2), ) conv_layer.append( normalization(norm_type, out_channels), ) conv_layer.append( nn.ReLU() ) block = nn.Sequential(*conv_layer) return block class Net(nn.Module): def __init__(self, normtype): super(Net, self).__init__() # prep layer self.prep_layer = custom_conv_layer(3, 64, False, 'batch') # layer 1 self.layer1_x = custom_conv_layer(64, 128, True, 'batch') self.layer1_r1 = nn.Sequential( custom_conv_layer(128, 128, False, 'batch'), custom_conv_layer(128, 128, False, 'batch') ) # layer 2 self.layer2 = custom_conv_layer(128, 256, True, 'batch') # Layer 3 self.layer3_x = custom_conv_layer(256, 512, True, 'batch') self.layer3_r3 = nn.Sequential( custom_conv_layer(512, 512, False, 'batch'), custom_conv_layer(512, 512, False, 'batch') ) # MaxPooling with Kernel Size 4 self.pool = nn.MaxPool2d(4, 4) # FC Layer self.fc = nn.Linear(512, 10) def forward(self, x): x = self.prep_layer(x) x1 = self.layer1_x(x) r1 = self.layer1_r1(x1) x = x1 + r1 x = self.layer2(x) x3 = self.layer3_x(x) r3 = self.layer3_r3(x3) x = x3 + r3 x = self.pool(x) x = x.view(-1, 512) x = self.fc(x) return F.softmax(x, dim=-1)