import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from custom_resnet import Net model = Net('batch') model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def inference(input_img, transparency = 0.5, target_layer_number = -1, num_top_classes = 5): """This function take input as an image and generate Grad Cam image of it. Args: input_img (_type_): Input image provided by user. transparency (float, optional): _description_. Defaults to 0.5. target_layer_number (int, optional): Output of layer which will be given to Grad Cam. Defaults to -1. num_top_classes (int, optional): To show number of classes to show in the output. Defaults to 5. Returns: top: Top Classes and Confidence level of the prediction visualization: Grad Cam output """ # transform = transforms.ToTensor() transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) org_img = input_img input_img = transform(input_img) # input_img = input_img input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) # exp_outputs = torch.exp(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} # confidences = {classes[i]: float(exp_outputs[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) target_layers = [model.layer3_r3[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] img = input_img.squeeze(0) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) # Sort confidences dictionary in descending order of values and take top num_top_classes sorted_confidences = {k: v for k, v in sorted(confidences.items(), key=lambda item: item[1], reverse=True)} top_classes = list(sorted_confidences.keys())[:num_top_classes] top = dict((k,v) for k, v in sorted_confidences.items() if k in top_classes) return top, visualization title = "CIFAR10 trained on ResNet18 Model with GradCAM" description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" examples = [["airplane.png", 0.5, -1, 5],["bird.jpeg", 0.5, -1, 5], ["car.jpeg", 0.5, -1, 5], ["cat.png", 0.5, -1, 5], ["deer.jpeg", 0.5, -1, 6], ["dog.png", 0.5, -1, 7], ["frog.jpeg", 0.5, -1, 4], ["horse.png", 0.5, -1, 7], ["ship.png", 0.5, -1, 3], ["truck.jpeg", 0.5, -1, 8]] demo = gr.Interface( inference, inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"), gr.Slider(0, 10, value = 1, step=1, label="Number of Top Classes")], outputs = [gr.Label(num_top_classes=10), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})], title = title, description = description, examples = examples, ) demo.launch()