MLAppDemo / custom_resnet.py
sanket03's picture
Added Custom Resnet file
0efbdc7
import torch.nn as nn
import torch.nn.functional as F
def normalization(norm_type, embedding):
if norm_type=='batch':
return nn.BatchNorm2d(embedding)
elif norm_type=='layer':
return nn.GroupNorm(1, embedding)
else:
return nn.GroupNorm(4, embedding)
def custom_conv_layer(in_channels,
out_channels,
pool,
norm_type,
):
conv_layer = [
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), padding=1, stride=1, bias=False)
]
if pool :
conv_layer.append(
nn.MaxPool2d(2, 2),
)
conv_layer.append(
normalization(norm_type, out_channels),
)
conv_layer.append(
nn.ReLU()
)
block = nn.Sequential(*conv_layer)
return block
class Net(nn.Module):
def __init__(self, normtype):
super(Net, self).__init__()
# prep layer
self.prep_layer = custom_conv_layer(3, 64, False, 'batch')
# layer 1
self.layer1_x = custom_conv_layer(64, 128, True, 'batch')
self.layer1_r1 = nn.Sequential(
custom_conv_layer(128, 128, False, 'batch'),
custom_conv_layer(128, 128, False, 'batch')
)
# layer 2
self.layer2 = custom_conv_layer(128, 256, True, 'batch')
# Layer 3
self.layer3_x = custom_conv_layer(256, 512, True, 'batch')
self.layer3_r3 = nn.Sequential(
custom_conv_layer(512, 512, False, 'batch'),
custom_conv_layer(512, 512, False, 'batch')
)
# MaxPooling with Kernel Size 4
self.pool = nn.MaxPool2d(4, 4)
# FC Layer
self.fc = nn.Linear(512, 10)
def forward(self, x):
x = self.prep_layer(x)
x1 = self.layer1_x(x)
r1 = self.layer1_r1(x1)
x = x1 + r1
x = self.layer2(x)
x3 = self.layer3_x(x)
r3 = self.layer3_r3(x3)
x = x3 + r3
x = self.pool(x)
x = x.view(-1, 512)
x = self.fc(x)
return F.softmax(x, dim=-1)