|
import torch, torchvision |
|
from torchvision import transforms |
|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image |
|
from pytorch_grad_cam import GradCAM |
|
from pytorch_grad_cam.utils.image import show_cam_on_image |
|
from custom_resnet import Net |
|
|
|
model = Net('batch') |
|
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) |
|
|
|
classes = ('plane', 'car', 'bird', 'cat', 'deer', |
|
'dog', 'frog', 'horse', 'ship', 'truck') |
|
|
|
def inference(input_img, transparency = 0.5, target_layer_number = -1): |
|
transform = transforms.ToTensor() |
|
org_img = input_img |
|
input_img = transform(input_img) |
|
|
|
input_img = input_img.unsqueeze(0) |
|
outputs = model(input_img) |
|
softmax = torch.nn.Softmax(dim=0) |
|
o = softmax(outputs.flatten()) |
|
confidences = {classes[i]: float(o[i]) for i in range(10)} |
|
_, prediction = torch.max(outputs, 1) |
|
target_layers = [model.layer2[target_layer_number]] |
|
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=False) |
|
grayscale_cam = cam(input_tensor=input_img, targets=None) |
|
grayscale_cam = grayscale_cam[0, :] |
|
img = input_img.squeeze(0) |
|
rgb_img = np.transpose(img, (1, 2, 0)) |
|
rgb_img = rgb_img.numpy() |
|
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) |
|
return confidences, visualization |
|
|
|
title = "CIFAR10 trained on ResNet18 Model with GradCAM" |
|
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" |
|
examples = [["cat.png", 0.5, -1],["dog.png", 0.5, -1]] |
|
|
|
demo = gr.Interface( |
|
inference, |
|
inputs = [gr.Image(shape=(32, 32), label="Input Image"), gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")], |
|
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output", style={"width": "128px", "height": "128px"})], |
|
title = title, |
|
description = description, |
|
examples = examples, |
|
) |
|
|
|
demo.launch() |
|
|