File size: 13,886 Bytes
f50f696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import time
import functools
import random
import math
import traceback

import torch
from torch import nn
import gpytorch
from botorch.models import SingleTaskGP
from botorch.models.gp_regression import MIN_INFERRED_NOISE_LEVEL
from botorch.fit import fit_gpytorch_model
from gpytorch.mlls import ExactMarginalLogLikelihood
from gpytorch.likelihoods import GaussianLikelihood
from gpytorch.priors.torch_priors import GammaPrior
from gpytorch.constraints import GreaterThan


from bar_distribution import BarDistribution
from utils import default_device
from .utils import get_batch_to_dataloader
from . import fast_gp

def get_model(x, y, hyperparameters: dict, sample=True):
    aug_batch_shape = SingleTaskGP(x,y.unsqueeze(-1))._aug_batch_shape
    noise_prior = GammaPrior(hyperparameters.get('noise_concentration',1.1), hyperparameters.get('noise_rate',0.05))
    noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate
    likelihood = GaussianLikelihood(
        noise_prior=noise_prior,
        batch_shape=aug_batch_shape,
        noise_constraint=GreaterThan(
            MIN_INFERRED_NOISE_LEVEL,
            transform=None,
            initial_value=noise_prior_mode,
        ),
    )
    model = SingleTaskGP(x, y.unsqueeze(-1),
                         covar_module=gpytorch.kernels.ScaleKernel(
                            gpytorch.kernels.MaternKernel(
                                nu=hyperparameters.get('nu',2.5),
                                ard_num_dims=x.shape[-1],
                                batch_shape=aug_batch_shape,
                                lengthscale_prior=gpytorch.priors.GammaPrior(hyperparameters.get('lengthscale_concentration',3.0), hyperparameters.get('lengthscale_rate',6.0)),
                            ),
                            batch_shape=aug_batch_shape,
                            outputscale_prior=gpytorch.priors.GammaPrior(hyperparameters.get('outputscale_concentration',.5), hyperparameters.get('outputscale_rate',0.15)),
                        ), likelihood=likelihood)

    likelihood = model.likelihood
    if sample:
        sampled_model = model.pyro_sample_from_prior()
        return sampled_model, sampled_model.likelihood
    else:
        assert not(hyperparameters.get('sigmoid', False)) and not(hyperparameters.get('y_minmax_norm', False)), "Sigmoid and y_minmax_norm can only be used to sample models..."
        return model, likelihood


@torch.no_grad()
def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None,
              batch_size_per_gp_sample=None, num_outputs=1,
              fix_to_range=None, equidistant_x=False):
    '''
    This function is very similar to the equivalent in .fast_gp. The only difference is that this function operates over
    a mixture of GP priors.
    :param batch_size:
    :param seq_len:
    :param num_features:
    :param device:
    :param hyperparameters:
    :param for_regression:
    :return:
    '''
    assert num_outputs == 1
    hyperparameters = hyperparameters or {}
    with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))):
        batch_size_per_gp_sample = (batch_size_per_gp_sample or max(batch_size // 10,1))
        assert batch_size % batch_size_per_gp_sample == 0

        total_num_candidates = batch_size*(2**(fix_to_range is not None))
        num_candidates = batch_size_per_gp_sample * (2**(fix_to_range is not None))
        if equidistant_x:
            assert num_features == 1
            x = torch.linspace(0,1.,seq_len).unsqueeze(0).repeat(total_num_candidates,1).unsqueeze(-1)
        else:
            x = torch.rand(total_num_candidates, seq_len, num_features, device=device)
        samples = []
        for i in range(0,total_num_candidates,num_candidates):
            num_of_dims ~ uniform
            model, likelihood = get_model(x[i:i+num_candidates,...,:num_of_dims], torch.zeros(num_candidates,x.shape[1]), hyperparameters)
            x[i:i + num_candidates, ..., num_of_dims:] = 0
            x[i:i + num_candidates, ..., :num_of_dims] *= total_dims/num_of_dims
            #print(model.covar_module.base_kernel.lengthscale)
            model.to(device)
            # trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
            # trained_model.eval()
            successful_sample = 0
            throwaway_share = 0.
            while successful_sample < 1:
                with gpytorch.settings.prior_mode(True):
                    d = model(x[i:i+num_candidates])
                    d = likelihood(d)
                    sample = d.sample() # bs_per_gp_s x T
                    if hyperparameters.get('y_minmax_norm'):
                        sample = ((sample - sample.min(1)[0]) / (sample.max(1)[0] - sample.min(1)[0]))
                    if hyperparameters.get('sigmoid'):
                        sample = sample.sigmoid()
                    if fix_to_range is None:
                        samples.append(sample.transpose(0, 1))
                        successful_sample = True
                        continue
                    smaller_mask = sample < fix_to_range[0]
                    larger_mask = sample >= fix_to_range[1]
                    in_range_mask = ~ (smaller_mask | larger_mask).any(1)
                    throwaway_share += (~in_range_mask[:batch_size_per_gp_sample]).sum()/batch_size_per_gp_sample
                    if in_range_mask.sum() < batch_size_per_gp_sample:
                        successful_sample -= 1
                        if successful_sample < 100:
                            print("Please change hyper-parameters (e.g. decrease outputscale_mean) it"
                                  "seems like the range is set to tight for your hyper-parameters.")
                        continue

                    x[i:i+batch_size_per_gp_sample] = x[i:i+num_candidates][in_range_mask][:batch_size_per_gp_sample]
                    sample = sample[in_range_mask][:batch_size_per_gp_sample]
                    samples.append(sample.transpose(0, 1))
                    successful_sample = True
        if random.random() < .01:
            print('throwaway share', throwaway_share/(batch_size//batch_size_per_gp_sample))

        #print(f'took {time.time() - start}')
        sample = torch.cat(samples, 1)
        x = x.view(-1,batch_size,seq_len,num_features)[0]
        # TODO think about enabling the line below
        #sample = sample - sample[0, :].unsqueeze(0).expand(*sample.shape)
        x = x.transpose(0,1)
        assert x.shape[:2] == sample.shape[:2]
        target_sample = sample
    return x, sample, target_sample # x.shape = (T,B,H)


class DataLoader(get_batch_to_dataloader(get_batch)):
    num_outputs = 1
    @torch.no_grad()
    def validate(self, model, step_size=1, start_pos=0):
        if isinstance(model.criterion, BarDistribution):
            (x,y), target_y = self.gbm(**self.get_batch_kwargs, fuse_x_y=self.fuse_x_y)
            model.eval()
            losses = []
            for eval_pos in range(start_pos, len(x), step_size):
                logits = model((x,y), single_eval_pos=eval_pos)
                means = model.criterion.mean(logits) # num_evals x batch_size
                mse = nn.MSELoss()
                losses.append(mse(means[0], target_y[eval_pos]))
            model.train()
            return torch.stack(losses)
        else:
            return 123.


@torch.enable_grad()
def get_fitted_model(x, y, hyperparameters, device):
    # fit the gaussian process
    model, likelihood = get_model(x,y,hyperparameters,sample=False)
    #print(model.covar_module.base_kernel.lengthscale)
    model.to(device)
    mll = ExactMarginalLogLikelihood(likelihood, model)
    model.train()
    fit_gpytorch_model(mll)
    #print(model.covar_module.base_kernel.lengthscale)
    return model, likelihood


evaluate = functools.partial(fast_gp.evaluate, get_model_on_device=get_fitted_model)

def get_mcmc_model(x, y, hyperparameters, device, num_samples, warmup_steps):
    from pyro.infer.mcmc import NUTS, MCMC
    import pyro
    x = x.to(device)
    y = y.to(device)
    model, likelihood = get_model(x, y, hyperparameters, sample=False)
    model.to(device)


    def pyro_model(x, y):
        sampled_model = model.pyro_sample_from_prior()
        _ = sampled_model.likelihood(sampled_model(x))
        return y

    nuts_kernel = NUTS(pyro_model, adapt_step_size=True)
    mcmc_run = MCMC(nuts_kernel, num_samples=num_samples, warmup_steps=warmup_steps)
    #print(x.shape)
    mcmc_run.run(x, y)
    model.pyro_load_from_samples(mcmc_run.get_samples())
    model.eval()
    # test_x = torch.linspace(0, 1, 101).unsqueeze(-1)
    # test_y = torch.sin(test_x * (2 * math.pi))
    # expanded_test_x = test_x.unsqueeze(0).repeat(num_samples, 1, 1)
    # output = model(expanded_test_x)
    #print(x.shape)
    return model, likelihood
    # output = model(x[-1].unsqueeze(1).repeat(1, num_samples 1))
    # return output.mean




def get_mean_logdensity(dists, x: torch.Tensor, full_range=None):
    means = torch.cat([d.mean.squeeze() for d in dists], 0)
    vars = torch.cat([d.variance.squeeze() for d in dists], 0)
    assert len(means.shape) == 1 and len(vars.shape) == 1
    dist = torch.distributions.Normal(means, vars.sqrt())
    #logprobs = torch.cat([d.log_prob(x) for d in dists], 0)
    logprobs = dist.log_prob(x)
    if full_range is not None:
        used_weight = 1. - (dist.cdf(torch.tensor(full_range[0])) + (1.-dist.cdf(torch.tensor(full_range[1]))))
        if torch.isinf(-torch.log(used_weight)).any() or torch.isinf(torch.log(used_weight)).any():
            print('factor is inf', -torch.log(used_weight))
        logprobs -= torch.log(used_weight)
    assert len(logprobs.shape) == 1
    #print(logprobs)
    return torch.logsumexp(logprobs, 0) - math.log(len(logprobs))


def evaluate_(x, y, y_non_noisy, hyperparameters=None, device=default_device, num_samples=100, warmup_steps=300,
              full_range=None, min_seq_len=0, use_likelihood=False):
    with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))), gpytorch.settings.fast_pred_var(False):
        x = x.to(device)
        y = y.to(device)
        start_time = time.time()
        losses_after_t = [.0] if min_seq_len == 0 else []
        all_losses = []

        for t in range(max(min_seq_len,1), len(x)):
            #print('Timestep', t)
            loss_sum = 0.
            step_losses = []
            start_step = time.time()
            for b_i in range(x.shape[1]):
                done = 0
                while done < 1:
                    try:
                        model, likelihood = get_mcmc_model(x[:t, b_i], y[:t, b_i], hyperparameters, device, num_samples=num_samples, warmup_steps=warmup_steps)
                        model.eval()

                        with torch.no_grad():
                            dists = model(x[t, b_i, :].unsqueeze(
                                0))  # TODO check what is going on here! Does the GP interpret the input wrong?
                            if use_likelihood:
                                dists = likelihood(dists)
                            l = -get_mean_logdensity([dists], y[t, b_i], full_range)
                        done = 1
                    except Exception as e:
                        done -= 1
                        print('Trying again..')
                        print(traceback.format_exc())
                        print(e)
                    finally:
                        if done < -10:
                            print('Too many retries...')
                            exit()

                step_losses.append(l.item())
                #print('loss',l.item())
                print(f'current average loss at step {t} is {sum(step_losses)/len(step_losses)} with {(time.time()-start_step)/len(step_losses)} s per eval.')
                loss_sum += l

            loss_sum /= x.shape[1]
            all_losses.append(step_losses)
            print(f'loss after step {t} is {loss_sum}')
            losses_after_t.append(loss_sum)
            print(f'losses so far {torch.tensor(losses_after_t)}')
        return torch.tensor(losses_after_t), time.time() - start_time, all_losses





if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--batch_size', type=int)
    parser.add_argument('--seq_len', type=int)
    parser.add_argument('--min_seq_len', type=int, default=0)
    parser.add_argument('--warmup_steps', type=int)
    parser.add_argument('--num_samples', type=int)
    parser.add_argument('--min_y', type=int)
    parser.add_argument('--max_y', type=int)
    parser.add_argument('--dim', type=int, default=1)
    parser.add_argument('--use_likelihood', default=True, type=bool)
    parser.add_argument('--device', default='cpu')
    parser.add_argument('--outputscale_concentraion', default=2., type=float)
    parser.add_argument('--noise_concentration', default=1.1, type=float)
    parser.add_argument('--noise_rate', default=.05, type=float)

    args = parser.parse_args()

    print('min_y:', args.min_y)
    full_range = (None if args.min_y is None else (args.min_y,args.max_y))

    hps = {'outputscale_concentration': args.outputscale_concentraion, 'noise_concentration': args.noise_concentration,
           'noise_rate': args.noise_rate, 'fast_computations': (False,False,False)}
    x, y, _ = get_batch(args.batch_size, args.seq_len, args.dim, fix_to_range=full_range, hyperparameters=hps)
    print('RESULT:', evaluate_(x, y, y, device=args.device, warmup_steps=args.warmup_steps,
                               num_samples=args.num_samples, full_range=full_range, min_seq_len=args.min_seq_len,
                               hyperparameters=hps, use_likelihood=args.use_likelihood))