Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel, PeftConfig
|
|
|
5 |
|
6 |
# Load model and tokenizer
|
7 |
MODEL_PATH = "sagar007/phi2_finetune"
|
@@ -9,16 +10,9 @@ MODEL_PATH = "sagar007/phi2_finetune"
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
11 |
|
12 |
-
bnb_config = BitsAndBytesConfig(
|
13 |
-
load_in_4bit=True,
|
14 |
-
bnb_4bit_quant_type="nf4",
|
15 |
-
bnb_4bit_compute_dtype=torch.float16,
|
16 |
-
bnb_4bit_use_double_quant=False
|
17 |
-
)
|
18 |
-
|
19 |
base_model = AutoModelForCausalLM.from_pretrained(
|
20 |
"microsoft/phi-2",
|
21 |
-
|
22 |
device_map="auto",
|
23 |
trust_remote_code=True
|
24 |
)
|
@@ -27,9 +21,10 @@ peft_config = PeftConfig.from_pretrained(MODEL_PATH)
|
|
27 |
model = PeftModel.from_pretrained(base_model, MODEL_PATH)
|
28 |
model.eval()
|
29 |
|
|
|
30 |
def generate_response(instruction, max_length=512):
|
31 |
prompt = f"Instruction: {instruction}\nResponse:"
|
32 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
33 |
|
34 |
with torch.no_grad():
|
35 |
outputs = model.generate(
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
+
import spaces
|
6 |
|
7 |
# Load model and tokenizer
|
8 |
MODEL_PATH = "sagar007/phi2_finetune"
|
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
11 |
tokenizer.pad_token = tokenizer.eos_token
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
"microsoft/phi-2",
|
15 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
16 |
device_map="auto",
|
17 |
trust_remote_code=True
|
18 |
)
|
|
|
21 |
model = PeftModel.from_pretrained(base_model, MODEL_PATH)
|
22 |
model.eval()
|
23 |
|
24 |
+
@spaces.GPU(duration=60)
|
25 |
def generate_response(instruction, max_length=512):
|
26 |
prompt = f"Instruction: {instruction}\nResponse:"
|
27 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
28 |
|
29 |
with torch.no_grad():
|
30 |
outputs = model.generate(
|