Spaces:
Running
on
Zero
Running
on
Zero
updates
Browse files- .gitignore +1 -0
- Flux-LoRA-Generation-Advanced.zip +3 -0
- flux_app/backend.py +9 -13
- flux_app/enhance_v1.py +0 -56
- flux_app/enhance_v2.py +0 -55
- flux_app/frontend.py +1 -1
- flux_app/frontend_nw.py +0 -236
- flux_app/frontend_v1.py +0 -216
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/backup
|
Flux-LoRA-Generation-Advanced.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2537b224b8b98c72939afaf580fd85d9c375d1f6e1f94b1c2f630f22fc0f03ce
|
3 |
+
size 26901
|
flux_app/backend.py
CHANGED
@@ -7,8 +7,8 @@ from diffusers import (
|
|
7 |
AutoPipelineForImage2Image,
|
8 |
)
|
9 |
from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED # Absolute import
|
10 |
-
from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration
|
11 |
-
from flux_app.lora_handling import
|
12 |
import time
|
13 |
from huggingface_hub import login
|
14 |
|
@@ -21,17 +21,14 @@ class ModelManager:
|
|
21 |
|
22 |
if hf_token:
|
23 |
login(token=hf_token) # Log in with the provided token
|
24 |
-
#else: # Optional: You could add a fallback to interactive login
|
25 |
-
# login()
|
26 |
|
27 |
self.initialize_models()
|
28 |
|
29 |
-
|
30 |
def initialize_models(self):
|
31 |
"""Initializes the diffusion pipelines and autoencoders."""
|
32 |
-
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE
|
33 |
-
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE
|
34 |
-
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1
|
35 |
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
36 |
BASE_MODEL,
|
37 |
vae=self.good_vae,
|
@@ -40,18 +37,17 @@ class ModelManager:
|
|
40 |
tokenizer=self.pipe.tokenizer,
|
41 |
text_encoder_2=self.pipe.text_encoder_2,
|
42 |
tokenizer_2=self.pipe.tokenizer_2,
|
43 |
-
torch_dtype=DTYPE
|
44 |
-
token=True
|
45 |
)
|
46 |
-
self.pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(self.pipe)
|
47 |
|
|
|
|
|
48 |
|
49 |
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
|
50 |
"""Generates an image using the text-to-image pipeline."""
|
51 |
self.pipe.to(DEVICE)
|
52 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
53 |
with calculateDuration("Generating image"):
|
54 |
-
|
55 |
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
56 |
prompt=prompt_mash,
|
57 |
num_inference_steps=steps,
|
@@ -83,4 +79,4 @@ class ModelManager:
|
|
83 |
joint_attention_kwargs={"scale": lora_scale},
|
84 |
output_type="pil",
|
85 |
).images[0]
|
86 |
-
return final_image
|
|
|
7 |
AutoPipelineForImage2Image,
|
8 |
)
|
9 |
from flux_app.config import DTYPE, DEVICE, BASE_MODEL, TAEF1_MODEL, MAX_SEED # Absolute import
|
10 |
+
from flux_app.utilities import calculate_shift, retrieve_timesteps, load_image_from_path, calculateDuration # Absolute import
|
11 |
+
from flux_app.lora_handling import flux_pipe_call_that_returns_an_iterable_of_images # Absolute import
|
12 |
import time
|
13 |
from huggingface_hub import login
|
14 |
|
|
|
21 |
|
22 |
if hf_token:
|
23 |
login(token=hf_token) # Log in with the provided token
|
|
|
|
|
24 |
|
25 |
self.initialize_models()
|
26 |
|
|
|
27 |
def initialize_models(self):
|
28 |
"""Initializes the diffusion pipelines and autoencoders."""
|
29 |
+
self.taef1 = AutoencoderTiny.from_pretrained(TAEF1_MODEL, torch_dtype=DTYPE).to(DEVICE)
|
30 |
+
self.good_vae = AutoencoderKL.from_pretrained(BASE_MODEL, subfolder="vae", torch_dtype=DTYPE).to(DEVICE)
|
31 |
+
self.pipe = DiffusionPipeline.from_pretrained(BASE_MODEL, torch_dtype=DTYPE, vae=self.taef1).to(DEVICE)
|
32 |
self.pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
33 |
BASE_MODEL,
|
34 |
vae=self.good_vae,
|
|
|
37 |
tokenizer=self.pipe.tokenizer,
|
38 |
text_encoder_2=self.pipe.text_encoder_2,
|
39 |
tokenizer_2=self.pipe.tokenizer_2,
|
40 |
+
torch_dtype=DTYPE
|
|
|
41 |
)
|
|
|
42 |
|
43 |
+
setattr(self.pipe, "flux_pipe_call_that_returns_an_iterable_of_images",
|
44 |
+
lambda *args, **kwargs: flux_pipe_call_that_returns_an_iterable_of_images(self.pipe, *args, **kwargs))
|
45 |
|
46 |
def generate_image(self, prompt_mash, steps, seed, cfg_scale, width, height, lora_scale):
|
47 |
"""Generates an image using the text-to-image pipeline."""
|
48 |
self.pipe.to(DEVICE)
|
49 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
50 |
with calculateDuration("Generating image"):
|
|
|
51 |
for img in self.pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
52 |
prompt=prompt_mash,
|
53 |
num_inference_steps=steps,
|
|
|
79 |
joint_attention_kwargs={"scale": lora_scale},
|
80 |
output_type="pil",
|
81 |
).images[0]
|
82 |
+
return final_image
|
flux_app/enhance_v1.py
DELETED
@@ -1,56 +0,0 @@
|
|
1 |
-
# flux_app/enhance.py
|
2 |
-
import time
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
# Initialize the inference client with the new LLM
|
7 |
-
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
8 |
-
|
9 |
-
# Define the system prompt for enhancing user prompts
|
10 |
-
SYSTEM_PROMPT = (
|
11 |
-
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
12 |
-
"without changing the essence, only write the enhanced prompt and nothing else."
|
13 |
-
)
|
14 |
-
|
15 |
-
def format_prompt(message):
|
16 |
-
"""
|
17 |
-
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
18 |
-
"""
|
19 |
-
timestamp = time.time()
|
20 |
-
formatted = (
|
21 |
-
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
22 |
-
f"[INST] {message} {timestamp} [/INST]"
|
23 |
-
)
|
24 |
-
return formatted
|
25 |
-
|
26 |
-
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
27 |
-
"""
|
28 |
-
Generate an enhanced prompt using the new LLM.
|
29 |
-
This function yields intermediate results as they are generated.
|
30 |
-
"""
|
31 |
-
temperature = float(temperature)
|
32 |
-
if temperature < 1e-2:
|
33 |
-
temperature = 1e-2
|
34 |
-
top_p = float(top_p)
|
35 |
-
generate_kwargs = {
|
36 |
-
"temperature": temperature,
|
37 |
-
"max_new_tokens": int(max_new_tokens),
|
38 |
-
"top_p": top_p,
|
39 |
-
"repetition_penalty": float(repetition_penalty),
|
40 |
-
"do_sample": True,
|
41 |
-
}
|
42 |
-
formatted_prompt = format_prompt(message)
|
43 |
-
stream = client.text_generation(
|
44 |
-
formatted_prompt,
|
45 |
-
**generate_kwargs,
|
46 |
-
stream=True,
|
47 |
-
details=True,
|
48 |
-
return_full_text=False,
|
49 |
-
)
|
50 |
-
output = ""
|
51 |
-
for response in stream:
|
52 |
-
token_text = response.token.text
|
53 |
-
output += token_text
|
54 |
-
yield output.strip('</s>')
|
55 |
-
return output.strip('</s>')
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_app/enhance_v2.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
# flux_app/enhance.py
|
2 |
-
import time
|
3 |
-
from huggingface_hub import InferenceClient
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
# Initialize the inference client with the new LLM
|
7 |
-
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
8 |
-
|
9 |
-
# Define the system prompt for enhancing user prompts
|
10 |
-
SYSTEM_PROMPT = (
|
11 |
-
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words "
|
12 |
-
"without changing the essence, only write the enhanced prompt and nothing else."
|
13 |
-
)
|
14 |
-
|
15 |
-
def format_prompt(message):
|
16 |
-
"""
|
17 |
-
Format the input message using the system prompt and a timestamp to ensure uniqueness.
|
18 |
-
"""
|
19 |
-
timestamp = time.time()
|
20 |
-
formatted = (
|
21 |
-
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]"
|
22 |
-
f"[INST] {message} {timestamp} [/INST]"
|
23 |
-
)
|
24 |
-
return formatted
|
25 |
-
|
26 |
-
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0):
|
27 |
-
"""
|
28 |
-
Generate an enhanced prompt using the new LLM.
|
29 |
-
This function yields intermediate results as they are generated.
|
30 |
-
"""
|
31 |
-
temperature = float(temperature)
|
32 |
-
if temperature < 1e-2:
|
33 |
-
temperature = 1e-2
|
34 |
-
top_p = float(top_p)
|
35 |
-
generate_kwargs = {
|
36 |
-
"temperature": temperature,
|
37 |
-
"max_new_tokens": int(max_new_tokens),
|
38 |
-
"top_p": top_p,
|
39 |
-
"repetition_penalty": float(repetition_penalty),
|
40 |
-
"do_sample": True,
|
41 |
-
}
|
42 |
-
formatted_prompt = format_prompt(message)
|
43 |
-
stream = client.text_generation(
|
44 |
-
formatted_prompt,
|
45 |
-
**generate_kwargs,
|
46 |
-
stream=True,
|
47 |
-
details=True,
|
48 |
-
return_full_text=False,
|
49 |
-
)
|
50 |
-
output = ""
|
51 |
-
for response in stream:
|
52 |
-
token_text = response.token.text
|
53 |
-
output += token_text
|
54 |
-
yield output.strip('</s>')
|
55 |
-
return output.strip('</s>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_app/frontend.py
CHANGED
@@ -103,7 +103,7 @@ class Frontend:
|
|
103 |
print("Warning: lora.py not found, using placeholder LoRAs.")
|
104 |
pass
|
105 |
|
106 |
-
@spaces.GPU(duration=
|
107 |
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
|
108 |
randomize_seed, seed, width, height, lora_scale, use_enhancer,
|
109 |
progress=gr.Progress(track_tqdm=True)):
|
|
|
103 |
print("Warning: lora.py not found, using placeholder LoRAs.")
|
104 |
pass
|
105 |
|
106 |
+
@spaces.GPU(duration=300)
|
107 |
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index,
|
108 |
randomize_seed, seed, width, height, lora_scale, use_enhancer,
|
109 |
progress=gr.Progress(track_tqdm=True)):
|
flux_app/frontend_nw.py
DELETED
@@ -1,236 +0,0 @@
|
|
1 |
-
# frontend.py
|
2 |
-
import gradio as gr
|
3 |
-
import sys
|
4 |
-
import os
|
5 |
-
import spaces
|
6 |
-
# Add the parent directory to sys.path
|
7 |
-
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
8 |
-
sys.path.insert(0, parent_dir)
|
9 |
-
#print(sys.path) #DEBUG
|
10 |
-
|
11 |
-
from flux_app.backend import ModelManager # Absolute import
|
12 |
-
from flux_app.config import MAX_SEED # Absolute import
|
13 |
-
from flux_app.lora_handling import (
|
14 |
-
add_custom_lora, remove_custom_lora, prepare_prompt,
|
15 |
-
unload_lora_weights, load_lora_weights_into_pipeline, update_selection
|
16 |
-
)
|
17 |
-
from flux_app.utilities import randomize_seed_if_needed, calculateDuration # Absolute import
|
18 |
-
# Import the prompt enhancer generate function from the new module
|
19 |
-
from flux_app.enhance import generate
|
20 |
-
|
21 |
-
# Dummy loras data for initial UI setup.
|
22 |
-
initial_loras = [
|
23 |
-
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
|
24 |
-
]
|
25 |
-
|
26 |
-
class Frontend:
|
27 |
-
def __init__(self, model_manager: ModelManager):
|
28 |
-
self.model_manager = model_manager
|
29 |
-
self.loras = initial_loras
|
30 |
-
self.load_initial_loras()
|
31 |
-
self.css = self.define_css()
|
32 |
-
|
33 |
-
def define_css(self):
|
34 |
-
# A cleaner, professional CSS styling.
|
35 |
-
return '''
|
36 |
-
/* Title Styling */
|
37 |
-
#title {
|
38 |
-
text-align: center;
|
39 |
-
margin-bottom: 20px;
|
40 |
-
}
|
41 |
-
#title h1 {
|
42 |
-
font-size: 2.5rem;
|
43 |
-
margin: 0;
|
44 |
-
color: #333;
|
45 |
-
}
|
46 |
-
/* Button and Column Styling */
|
47 |
-
#gen_btn {
|
48 |
-
width: 100%;
|
49 |
-
padding: 12px;
|
50 |
-
font-weight: bold;
|
51 |
-
border-radius: 5px;
|
52 |
-
}
|
53 |
-
#gen_column {
|
54 |
-
display: flex;
|
55 |
-
align-items: center;
|
56 |
-
justify-content: center;
|
57 |
-
}
|
58 |
-
/* Gallery and List Styling */
|
59 |
-
#gallery .grid-wrap {
|
60 |
-
margin-top: 15px;
|
61 |
-
}
|
62 |
-
#lora_list {
|
63 |
-
background-color: #f5f5f5;
|
64 |
-
padding: 10px;
|
65 |
-
border-radius: 4px;
|
66 |
-
font-size: 0.9rem;
|
67 |
-
}
|
68 |
-
.card_internal {
|
69 |
-
display: flex;
|
70 |
-
align-items: center;
|
71 |
-
height: 100px;
|
72 |
-
margin-top: 10px;
|
73 |
-
}
|
74 |
-
.card_internal img {
|
75 |
-
margin-right: 10px;
|
76 |
-
}
|
77 |
-
.styler {
|
78 |
-
--form-gap-width: 0px !important;
|
79 |
-
}
|
80 |
-
/* Progress Bar Styling */
|
81 |
-
.progress-container {
|
82 |
-
width: 100%;
|
83 |
-
height: 20px;
|
84 |
-
background-color: #e0e0e0;
|
85 |
-
border-radius: 10px;
|
86 |
-
overflow: hidden;
|
87 |
-
margin-bottom: 20px;
|
88 |
-
}
|
89 |
-
.progress-bar {
|
90 |
-
height: 100%;
|
91 |
-
background-color: #4f46e5;
|
92 |
-
transition: width 0.3s ease-in-out;
|
93 |
-
width: calc(var(--current) / var(--total) * 100%);
|
94 |
-
}
|
95 |
-
'''
|
96 |
-
|
97 |
-
def load_initial_loras(self):
|
98 |
-
try:
|
99 |
-
from flux_app.lora import loras as loras_list # Absolute import
|
100 |
-
self.loras = loras_list
|
101 |
-
except ImportError:
|
102 |
-
print("Warning: lora.py not found, using placeholder LoRAs.")
|
103 |
-
pass
|
104 |
-
|
105 |
-
@spaces.GPU(duration=100)
|
106 |
-
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer, progress=gr.Progress(track_tqdm=True)):
|
107 |
-
# If prompt enhancer is enabled, generate the enhanced prompt.
|
108 |
-
if use_enhancer:
|
109 |
-
enhanced_prompt = ""
|
110 |
-
# Generate the enhanced prompt (consume the generator to get the final result)
|
111 |
-
for chunk in generate(prompt):
|
112 |
-
enhanced_prompt = chunk
|
113 |
-
prompt_used = enhanced_prompt
|
114 |
-
else:
|
115 |
-
enhanced_prompt = ""
|
116 |
-
prompt_used = prompt
|
117 |
-
|
118 |
-
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
|
119 |
-
prompt_mash = prepare_prompt(prompt_used, selected_index, self.loras)
|
120 |
-
selected_lora = self.loras[selected_index]
|
121 |
-
|
122 |
-
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
|
123 |
-
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
|
124 |
-
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
|
125 |
-
|
126 |
-
if image_input is not None:
|
127 |
-
final_image = self.model_manager.generate_image_to_image(
|
128 |
-
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
|
129 |
-
)
|
130 |
-
yield final_image, seed, gr.update(visible=False), enhanced_prompt
|
131 |
-
else:
|
132 |
-
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
133 |
-
final_image = None
|
134 |
-
step_counter = 0
|
135 |
-
for image in image_generator:
|
136 |
-
step_counter += 1
|
137 |
-
final_image = image
|
138 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
139 |
-
yield image, seed, gr.update(value=progress_bar, visible=True), enhanced_prompt
|
140 |
-
|
141 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False), enhanced_prompt
|
142 |
-
|
143 |
-
def create_ui(self):
|
144 |
-
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
|
145 |
-
title = gr.HTML(
|
146 |
-
"""<h1>Flux LoRA Generation</h1>""",
|
147 |
-
elem_id="title",
|
148 |
-
)
|
149 |
-
selected_index = gr.State(None)
|
150 |
-
|
151 |
-
with gr.Row():
|
152 |
-
with gr.Column(scale=3):
|
153 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
|
154 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
155 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
156 |
-
with gr.Row():
|
157 |
-
with gr.Column():
|
158 |
-
selected_info = gr.Markdown("")
|
159 |
-
gallery = gr.Gallery(
|
160 |
-
[(item["image"], item["title"]) for item in self.loras],
|
161 |
-
label="LoRA Collection",
|
162 |
-
allow_preview=False,
|
163 |
-
columns=3,
|
164 |
-
elem_id="gallery",
|
165 |
-
show_share_button=False
|
166 |
-
)
|
167 |
-
with gr.Group():
|
168 |
-
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
|
169 |
-
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
170 |
-
custom_lora_info = gr.HTML(visible=False)
|
171 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
172 |
-
with gr.Column():
|
173 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
174 |
-
result = gr.Image(label="Generated Image")
|
175 |
-
|
176 |
-
with gr.Row():
|
177 |
-
with gr.Accordion("Advanced Settings", open=False):
|
178 |
-
with gr.Row():
|
179 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
180 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
181 |
-
with gr.Column():
|
182 |
-
with gr.Row():
|
183 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
184 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
185 |
-
with gr.Row():
|
186 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
187 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
188 |
-
with gr.Row():
|
189 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
190 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
191 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
192 |
-
# Prompt Enhancer Section
|
193 |
-
with gr.Group():
|
194 |
-
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=True)
|
195 |
-
show_enhanced_prompt = gr.Checkbox(label="Display Enhanced Prompt", value=False)
|
196 |
-
enhanced_prompt_box = gr.Textbox(label="Enhanced Prompt", lines=3, visible=False)
|
197 |
-
|
198 |
-
gallery.select(
|
199 |
-
update_selection,
|
200 |
-
inputs=[width, height, gr.State(self.loras)],
|
201 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
202 |
-
)
|
203 |
-
custom_lora.input(
|
204 |
-
add_custom_lora,
|
205 |
-
inputs=[custom_lora, gr.State(self.loras)],
|
206 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
207 |
-
)
|
208 |
-
custom_lora_button.click(
|
209 |
-
remove_custom_lora,
|
210 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
211 |
-
)
|
212 |
-
|
213 |
-
# Toggle the visibility of the enhanced prompt textbox based on the checkbox state.
|
214 |
-
show_enhanced_prompt.change(fn=lambda show: gr.update(visible=show),
|
215 |
-
inputs=show_enhanced_prompt,
|
216 |
-
outputs=enhanced_prompt_box)
|
217 |
-
|
218 |
-
gr.on(
|
219 |
-
triggers=[generate_button.click, prompt.submit],
|
220 |
-
fn=self.run_lora,
|
221 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, use_enhancer],
|
222 |
-
outputs=[result, seed, progress_bar, enhanced_prompt_box]
|
223 |
-
)
|
224 |
-
|
225 |
-
# Credits section added at the bottom
|
226 |
-
with gr.Row():
|
227 |
-
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
|
228 |
-
|
229 |
-
return app
|
230 |
-
|
231 |
-
if __name__ == "__main__":
|
232 |
-
model_manager = ModelManager()
|
233 |
-
frontend = Frontend(model_manager)
|
234 |
-
app = frontend.create_ui()
|
235 |
-
app.queue()
|
236 |
-
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flux_app/frontend_v1.py
DELETED
@@ -1,216 +0,0 @@
|
|
1 |
-
# frontend.py
|
2 |
-
import gradio as gr
|
3 |
-
import sys
|
4 |
-
import os
|
5 |
-
|
6 |
-
# Add the parent directory to sys.path
|
7 |
-
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
8 |
-
sys.path.insert(0, parent_dir)
|
9 |
-
#print(sys.path) #DEBUG
|
10 |
-
|
11 |
-
from flux_app.backend import ModelManager # Absolute import
|
12 |
-
from flux_app.config import MAX_SEED # Absolute import
|
13 |
-
from flux_app.lora_handling import (
|
14 |
-
add_custom_lora, remove_custom_lora, prepare_prompt,
|
15 |
-
unload_lora_weights, load_lora_weights_into_pipeline, update_selection
|
16 |
-
)
|
17 |
-
from flux_app.utilities import randomize_seed_if_needed, calculateDuration # Absolute import
|
18 |
-
import spaces
|
19 |
-
|
20 |
-
|
21 |
-
# Dummy loras data for initial UI setup.
|
22 |
-
initial_loras = [
|
23 |
-
{"image": "placeholder.jpg", "title": "Placeholder LoRA", "repo": "placeholder/repo", "weights": None, "trigger_word": ""},
|
24 |
-
]
|
25 |
-
|
26 |
-
class Frontend:
|
27 |
-
def __init__(self, model_manager: ModelManager):
|
28 |
-
self.model_manager = model_manager
|
29 |
-
self.loras = initial_loras
|
30 |
-
self.load_initial_loras()
|
31 |
-
self.css = self.define_css()
|
32 |
-
|
33 |
-
def define_css(self):
|
34 |
-
# A cleaner, professional CSS styling.
|
35 |
-
return '''
|
36 |
-
/* Title Styling */
|
37 |
-
#title {
|
38 |
-
text-align: center;
|
39 |
-
margin-bottom: 20px;
|
40 |
-
}
|
41 |
-
#title h1 {
|
42 |
-
font-size: 2.5rem;
|
43 |
-
margin: 0;
|
44 |
-
color: #333;
|
45 |
-
}
|
46 |
-
/* Button and Column Styling */
|
47 |
-
#gen_btn {
|
48 |
-
width: 100%;
|
49 |
-
padding: 12px;
|
50 |
-
font-weight: bold;
|
51 |
-
border-radius: 5px;
|
52 |
-
}
|
53 |
-
#gen_column {
|
54 |
-
display: flex;
|
55 |
-
align-items: center;
|
56 |
-
justify-content: center;
|
57 |
-
}
|
58 |
-
/* Gallery and List Styling */
|
59 |
-
#gallery .grid-wrap {
|
60 |
-
margin-top: 15px;
|
61 |
-
}
|
62 |
-
#lora_list {
|
63 |
-
background-color: #f5f5f5;
|
64 |
-
padding: 10px;
|
65 |
-
border-radius: 4px;
|
66 |
-
font-size: 0.9rem;
|
67 |
-
}
|
68 |
-
.card_internal {
|
69 |
-
display: flex;
|
70 |
-
align-items: center;
|
71 |
-
height: 100px;
|
72 |
-
margin-top: 10px;
|
73 |
-
}
|
74 |
-
.card_internal img {
|
75 |
-
margin-right: 10px;
|
76 |
-
}
|
77 |
-
.styler {
|
78 |
-
--form-gap-width: 0px !important;
|
79 |
-
}
|
80 |
-
/* Progress Bar Styling */
|
81 |
-
.progress-container {
|
82 |
-
width: 100%;
|
83 |
-
height: 20px;
|
84 |
-
background-color: #e0e0e0;
|
85 |
-
border-radius: 10px;
|
86 |
-
overflow: hidden;
|
87 |
-
margin-bottom: 20px;
|
88 |
-
}
|
89 |
-
.progress-bar {
|
90 |
-
height: 100%;
|
91 |
-
background-color: #4f46e5;
|
92 |
-
transition: width 0.3s ease-in-out;
|
93 |
-
width: calc(var(--current) / var(--total) * 100%);
|
94 |
-
}
|
95 |
-
'''
|
96 |
-
|
97 |
-
def load_initial_loras(self):
|
98 |
-
try:
|
99 |
-
from flux_app.lora import loras as loras_list # Absolute import
|
100 |
-
self.loras = loras_list
|
101 |
-
except ImportError:
|
102 |
-
print("Warning: lora.py not found, using placeholder LoRAs.")
|
103 |
-
pass
|
104 |
-
|
105 |
-
@spaces.GPU(duration=100)
|
106 |
-
def run_lora(self, prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
107 |
-
seed = randomize_seed_if_needed(randomize_seed, seed, MAX_SEED)
|
108 |
-
prompt_mash = prepare_prompt(prompt, selected_index, self.loras)
|
109 |
-
selected_lora = self.loras[selected_index]
|
110 |
-
|
111 |
-
unload_lora_weights(self.model_manager.pipe, self.model_manager.pipe_i2i)
|
112 |
-
pipe_to_use = self.model_manager.pipe_i2i if image_input is not None else self.model_manager.pipe
|
113 |
-
load_lora_weights_into_pipeline(pipe_to_use, selected_lora["repo"], selected_lora.get("weights"))
|
114 |
-
|
115 |
-
if image_input is not None:
|
116 |
-
final_image = self.model_manager.generate_image_to_image(
|
117 |
-
prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed
|
118 |
-
)
|
119 |
-
yield final_image, seed, gr.update(visible=False)
|
120 |
-
else:
|
121 |
-
image_generator = self.model_manager.generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale)
|
122 |
-
final_image = None
|
123 |
-
step_counter = 0
|
124 |
-
for image in image_generator:
|
125 |
-
step_counter += 1
|
126 |
-
final_image = image
|
127 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
128 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
129 |
-
|
130 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
131 |
-
|
132 |
-
def create_ui(self):
|
133 |
-
# Using a base theme for a clean and professional look.
|
134 |
-
with gr.Blocks(theme=gr.themes.Base(), css=self.css, title="Flux LoRA Generation") as app:
|
135 |
-
title = gr.HTML(
|
136 |
-
"""<h1>Flux LoRA Generation</h1>""",
|
137 |
-
elem_id="title",
|
138 |
-
)
|
139 |
-
selected_index = gr.State(None)
|
140 |
-
|
141 |
-
with gr.Row():
|
142 |
-
with gr.Column(scale=3):
|
143 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Choose the LoRA and type the prompt")
|
144 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
145 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
146 |
-
with gr.Row():
|
147 |
-
with gr.Column():
|
148 |
-
selected_info = gr.Markdown("")
|
149 |
-
gallery = gr.Gallery(
|
150 |
-
[(item["image"], item["title"]) for item in self.loras],
|
151 |
-
label="LoRA Collection",
|
152 |
-
allow_preview=False,
|
153 |
-
columns=3,
|
154 |
-
elem_id="gallery",
|
155 |
-
show_share_button=False
|
156 |
-
)
|
157 |
-
with gr.Group():
|
158 |
-
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
|
159 |
-
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
160 |
-
custom_lora_info = gr.HTML(visible=False)
|
161 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
162 |
-
with gr.Column():
|
163 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
164 |
-
result = gr.Image(label="Generated Image")
|
165 |
-
|
166 |
-
with gr.Row():
|
167 |
-
with gr.Accordion("Advanced Settings", open=False):
|
168 |
-
with gr.Row():
|
169 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
170 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
171 |
-
with gr.Column():
|
172 |
-
with gr.Row():
|
173 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
174 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
175 |
-
with gr.Row():
|
176 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
177 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
178 |
-
with gr.Row():
|
179 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
180 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
181 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
182 |
-
|
183 |
-
gallery.select(
|
184 |
-
update_selection,
|
185 |
-
inputs=[width, height, gr.State(self.loras)],
|
186 |
-
outputs=[prompt, selected_info, selected_index, width, height]
|
187 |
-
)
|
188 |
-
custom_lora.input(
|
189 |
-
add_custom_lora,
|
190 |
-
inputs=[custom_lora, gr.State(self.loras)],
|
191 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
|
192 |
-
)
|
193 |
-
custom_lora_button.click(
|
194 |
-
remove_custom_lora,
|
195 |
-
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
|
196 |
-
)
|
197 |
-
|
198 |
-
gr.on(
|
199 |
-
triggers=[generate_button.click, prompt.submit],
|
200 |
-
fn=self.run_lora,
|
201 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
202 |
-
outputs=[result, seed, progress_bar]
|
203 |
-
)
|
204 |
-
|
205 |
-
# Credits section added at the bottom
|
206 |
-
with gr.Row():
|
207 |
-
gr.HTML("<div style='text-align:center; font-size:0.9em; margin-top:20px;'>Credits: <a href='https://ruslanmv.com' target='_blank'>ruslanmv.com</a></div>")
|
208 |
-
|
209 |
-
return app
|
210 |
-
|
211 |
-
if __name__ == "__main__":
|
212 |
-
model_manager = ModelManager()
|
213 |
-
frontend = Frontend(model_manager)
|
214 |
-
app = frontend.create_ui()
|
215 |
-
app.queue()
|
216 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|