Spaces:
Running
on
Zero
Running
on
Zero
import time | |
import requests | |
import json | |
def generate(message, max_new_tokens=256, temperature=0.9, top_p=0.95, repetition_penalty=1.0): | |
""" | |
Generates an enhanced prompt using the streaming inference mechanism from a Hugging Face API endpoint. | |
This function formats the prompt with a system instruction, sends a streaming request to the API, | |
and yields the accumulated text as tokens are received. | |
Parameters: | |
message (str): The user's input prompt. | |
max_new_tokens (int): The maximum number of tokens to generate. | |
temperature (float): Sampling temperature. | |
top_p (float): Nucleus sampling parameter. | |
repetition_penalty (float): Penalty factor for repetition (not used in the payload but kept for API consistency). | |
Yields: | |
str: The accumulated generated text as it streams in. | |
""" | |
# Define the system prompt. | |
SYSTEM_PROMPT = ( | |
"You are a prompt enhancer and your work is to enhance the given prompt under 100 words " | |
"without changing the essence, only write the enhanced prompt and nothing else." | |
) | |
# Format the prompt with a timestamp for uniqueness. | |
timestamp = time.time() | |
formatted_prompt = ( | |
f"<s>[INST] SYSTEM: {SYSTEM_PROMPT} [/INST]" | |
f"[INST] {message} {timestamp} [/INST]" | |
) | |
# Define the API endpoint and headers. | |
api_url = "https://ruslanmv-hf-llm-api.hf.space/api/v1/chat/completions" | |
headers = {"Content-Type": "application/json"} | |
# Build the payload for the inference request. | |
payload = { | |
"model": "mixtral-8x7b", | |
"messages": [{"role": "user", "content": formatted_prompt}], | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_tokens": max_new_tokens, | |
"use_cache": False, | |
"stream": True | |
} | |
try: | |
response = requests.post(api_url, headers=headers, json=payload, stream=True) | |
response.raise_for_status() | |
full_output = "" | |
# Process the streaming response line by line. | |
for line in response.iter_lines(): | |
if not line: | |
continue | |
decoded_line = line.decode("utf-8").strip() | |
# Remove the "data:" prefix if present. | |
if decoded_line.startswith("data:"): | |
decoded_line = decoded_line[len("data:"):].strip() | |
# Check if the stream is finished. | |
if decoded_line == "[DONE]": | |
break | |
try: | |
json_data = json.loads(decoded_line) | |
for choice in json_data.get("choices", []): | |
delta = choice.get("delta", {}) | |
content = delta.get("content", "") | |
full_output += content | |
yield full_output # Yield the accumulated text so far. | |
# If the finish reason is provided, stop further streaming. | |
if choice.get("finish_reason") == "stop": | |
return | |
except json.JSONDecodeError: | |
# If a line is not valid JSON, skip it. | |
continue | |
except requests.exceptions.RequestException as e: | |
yield f"Error during generation: {str(e)}" | |