Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,163 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
|
4 |
-
#
|
5 |
-
st.
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
This is a demo of different DeepSeek models. Select a model, type your message, and click "Submit".
|
16 |
-
You can also adjust optional parameters like system message, max new tokens, temperature, and top-p.
|
17 |
-
""")
|
18 |
-
|
19 |
-
# --- Sidebar for Model Selection and Parameters ---
|
20 |
-
with st.sidebar:
|
21 |
-
st.header("Options")
|
22 |
-
model_choice = st.radio(
|
23 |
-
"Choose a Model",
|
24 |
-
options=["DeepSeek-R1-Distill-Qwen-32B", "DeepSeek-R1", "DeepSeek-R1-Zero"],
|
25 |
-
index=1 # Default to "DeepSeek-R1"
|
26 |
)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p):
|
55 |
-
# Create payload for the model
|
56 |
-
payload = {
|
57 |
-
"messages": [{"role": "user", "content": input_text}],
|
58 |
-
"system": system_message,
|
59 |
-
"max_tokens": max_new_tokens,
|
60 |
-
"temperature": temperature,
|
61 |
-
"top_p": top_p
|
62 |
-
}
|
63 |
-
|
64 |
-
# Run inference using the selected model
|
65 |
-
try:
|
66 |
-
response = demo(payload) # Use the demo object directly
|
67 |
-
if isinstance(response, dict) and "choices" in response:
|
68 |
-
assistant_response = response["choices"][0]["message"]["content"]
|
69 |
else:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# --- Chat Interface ---
|
83 |
-
st.header("Chat with DeepSeek")
|
84 |
-
|
85 |
-
# Display chat history
|
86 |
-
for user_msg, assistant_msg in st.session_state.chat_history:
|
87 |
-
with st.chat_message("user"):
|
88 |
-
st.write(user_msg)
|
89 |
-
with st.chat_message("assistant"):
|
90 |
-
st.write(assistant_msg)
|
91 |
-
|
92 |
-
# Input for new message
|
93 |
-
input_text = st.chat_input("Type your message here...")
|
94 |
-
|
95 |
-
# Handle new message submission
|
96 |
-
if input_text:
|
97 |
-
# Update chat history
|
98 |
-
st.session_state.chat_history = chatbot(
|
99 |
-
input_text,
|
100 |
-
st.session_state.chat_history,
|
101 |
-
model_choice,
|
102 |
-
system_message,
|
103 |
-
max_new_tokens,
|
104 |
-
temperature,
|
105 |
-
top_p
|
106 |
)
|
|
|
|
|
107 |
|
108 |
-
#
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
########################################
|
2 |
+
# app.py
|
3 |
+
########################################
|
4 |
import streamlit as st
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
+
|
7 |
+
# We define a cache to load pipelines for each model only once.
|
8 |
+
@st.cache_resource
|
9 |
+
def load_text_generation_pipeline(model_name: str):
|
10 |
+
"""
|
11 |
+
Loads a text-generation pipeline from the Hugging Face Hub.
|
12 |
+
"""
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_name,
|
16 |
+
torch_dtype="auto", # or torch.float16 if GPU is available
|
17 |
+
device_map="auto" # automatically map layers to available GPU(s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
)
|
19 |
+
text_generation = pipeline(
|
20 |
+
"text-generation",
|
21 |
+
model=model,
|
22 |
+
tokenizer=tokenizer
|
23 |
+
)
|
24 |
+
return text_generation
|
25 |
+
|
26 |
+
def generate_response(
|
27 |
+
text_generation,
|
28 |
+
system_prompt: str,
|
29 |
+
conversation_history: list,
|
30 |
+
user_query: str,
|
31 |
+
max_new_tokens: int,
|
32 |
+
temperature: float,
|
33 |
+
top_p: float
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Generates a response from the language model given the system prompt,
|
37 |
+
conversation history, and user query with specified parameters.
|
38 |
+
"""
|
39 |
+
# Construct a prompt that includes the system role, conversation history, and the new user input.
|
40 |
+
# Adjust format depending on your model's instructions format.
|
41 |
+
# Here we do a simple approach: system prompt + turn-by-turn conversation.
|
42 |
+
full_prompt = system_prompt.strip()
|
43 |
+
for (speaker, text) in conversation_history:
|
44 |
+
if speaker == "user":
|
45 |
+
full_prompt += f"\nUser: {text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
else:
|
47 |
+
full_prompt += f"\nAssistant: {text}"
|
48 |
+
# Add the new user query
|
49 |
+
full_prompt += f"\nUser: {user_query}\nAssistant:"
|
50 |
+
|
51 |
+
# Use the pipeline to generate text
|
52 |
+
outputs = text_generation(
|
53 |
+
full_prompt,
|
54 |
+
max_new_tokens=max_new_tokens,
|
55 |
+
temperature=temperature,
|
56 |
+
top_p=top_p,
|
57 |
+
do_sample=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
)
|
59 |
+
# The pipeline returns a list of generated sequences; get the text from the first one
|
60 |
+
generated_text = outputs[0]["generated_text"]
|
61 |
|
62 |
+
# Extract just the new answer part from the generated text
|
63 |
+
# Since we appended "Assistant:" at the end, the model's response is everything after that
|
64 |
+
answer = generated_text.split("Assistant:")[-1].strip()
|
65 |
+
return answer
|
66 |
+
|
67 |
+
def main():
|
68 |
+
st.title("Streamlit Chatbot with Model Selection")
|
69 |
+
st.markdown(
|
70 |
+
"""
|
71 |
+
**System message**: You are a friendly Chatbot created by [ruslanmv.com](https://ruslanmv.com)
|
72 |
+
Below you can select the model, adjust parameters, and begin chatting!
|
73 |
+
"""
|
74 |
+
)
|
75 |
+
|
76 |
+
# Sidebar for model selection and parameters
|
77 |
+
st.sidebar.header("Select Model & Parameters")
|
78 |
+
model_name = st.sidebar.selectbox(
|
79 |
+
"Choose a model:",
|
80 |
+
[
|
81 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
82 |
+
"deepseek-ai/DeepSeek-R1",
|
83 |
+
"deepseek-ai/DeepSeek-R1-Zero"
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
max_new_tokens = st.sidebar.slider(
|
88 |
+
"Max new tokens",
|
89 |
+
min_value=1,
|
90 |
+
max_value=4000,
|
91 |
+
value=1024,
|
92 |
+
step=1
|
93 |
+
)
|
94 |
+
|
95 |
+
temperature = st.sidebar.slider(
|
96 |
+
"Temperature",
|
97 |
+
min_value=0.1,
|
98 |
+
max_value=4.0,
|
99 |
+
value=1.0,
|
100 |
+
step=0.1
|
101 |
+
)
|
102 |
+
|
103 |
+
top_p = st.sidebar.slider(
|
104 |
+
"Top-p (nucleus sampling)",
|
105 |
+
min_value=0.1,
|
106 |
+
max_value=1.0,
|
107 |
+
value=0.9,
|
108 |
+
step=0.05
|
109 |
+
)
|
110 |
+
|
111 |
+
# The system "role" content
|
112 |
+
system_message = (
|
113 |
+
"You are a friendly Chatbot created by ruslanmv.com. "
|
114 |
+
"You answer user questions in a concise and helpful way."
|
115 |
+
)
|
116 |
+
|
117 |
+
# Load the chosen model
|
118 |
+
text_generation_pipeline = load_text_generation_pipeline(model_name)
|
119 |
+
|
120 |
+
# We'll keep conversation history in session_state
|
121 |
+
if "conversation" not in st.session_state:
|
122 |
+
st.session_state["conversation"] = [] # List of tuples (speaker, text)
|
123 |
+
|
124 |
+
# Display conversation so far
|
125 |
+
# Each element in st.session_state["conversation"] is ("user" or "assistant", message_text)
|
126 |
+
for speaker, text in st.session_state["conversation"]:
|
127 |
+
if speaker == "user":
|
128 |
+
st.markdown(f"<div style='text-align:left; color:blue'><strong>User:</strong> {text}</div>", unsafe_allow_html=True)
|
129 |
+
else:
|
130 |
+
st.markdown(f"<div style='text-align:left; color:green'><strong>Assistant:</strong> {text}</div>", unsafe_allow_html=True)
|
131 |
+
|
132 |
+
# User input text box
|
133 |
+
user_input = st.text_input("Your message", "")
|
134 |
+
|
135 |
+
# When user hits "Send"
|
136 |
+
if st.button("Send"):
|
137 |
+
if user_input.strip():
|
138 |
+
# 1) Add user query to conversation
|
139 |
+
st.session_state["conversation"].append(("user", user_input.strip()))
|
140 |
+
# 2) Generate a response
|
141 |
+
with st.spinner("Thinking..."):
|
142 |
+
answer = generate_response(
|
143 |
+
text_generation=text_generation_pipeline,
|
144 |
+
system_prompt=system_message,
|
145 |
+
conversation_history=st.session_state["conversation"],
|
146 |
+
user_query=user_input.strip(),
|
147 |
+
max_new_tokens=max_new_tokens,
|
148 |
+
temperature=temperature,
|
149 |
+
top_p=top_p
|
150 |
+
)
|
151 |
+
# 3) Add assistant answer to conversation
|
152 |
+
st.session_state["conversation"].append(("assistant", answer))
|
153 |
+
# 4) Rerun to display
|
154 |
+
st.experimental_rerun()
|
155 |
+
|
156 |
+
# Optional: Provide a button to clear the conversation
|
157 |
+
if st.button("Clear Conversation"):
|
158 |
+
st.session_state["conversation"] = []
|
159 |
+
st.experimental_rerun()
|
160 |
+
|
161 |
+
|
162 |
+
if __name__ == "__main__":
|
163 |
+
main()
|