ravithejads's picture
Update app.py
95ba4a0
from llama_index import Document, GPTListIndex, GPTSimpleVectorIndex
import gradio as gr
import openai
import os
from pytube import YouTube
def download_yt_video(ytlink):
try:
yt = YouTube(ytlink)
video = yt.streams.filter(only_audio=True).first()
out_file = video.download(output_path="./")
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
return new_file
except Exception as e:
return e
def get_transcript(filename):
import requests
import json
headers = {
'accept': 'application/json',
'x-gladia-key': '70ad5f6e-31e6-4acf-8a15-89c166c4cc9f',
# requests won't add a boundary if this header is set when you pass files=
# 'Content-Type': 'multipart/form-data',
}
files = {
'audio': (filename, open(filename, 'rb'), 'audio/mpeg'),
'audio_url': (None, 'http://files.gladia.io/example/audio-transcription/split_infinity.wav'),
'language': (None, 'english'),
'language_behaviour': (None, 'manual'),
'output_format': (None, 'json'),
}
response = requests.post(
'https://api.gladia.io/audio/text/audio-transcription/', headers=headers, files=files)
data = json.loads(response.text)
result = ""
for dict_ in data['prediction']:
result = result + dict_['transcription'] + " "
result = ' '.join(result.strip().split())
with open(f"{filename[:-4]}.txt", "w") as f:
f.write(result)
return result
def createindex(url, openaikey):
try:
filename = download_yt_video(url)
transcript = get_transcript(filename)
os.remove(filename)
# Store openai key in environment
os.environ['OPENAI_API_KEY'] = openaikey
# Create index
index = GPTListIndex([Document(transcript)], chunk_size_limit=2500)
index_filename = "index.json"
index.save_to_disk(index_filename)
return "Video processed. Now you can start querying."
except Exception as e:
return e
def videoques(query, openaikey):
# Basic Checks
if not query:
return "Please enter your query."
# Basic Checks
if not openaikey:
return "Please enter openaikey."
# Store openai key in environment
os.environ['OPENAI_API_KEY'] = openaikey
index_name = "index.json"
index = GPTListIndex.load_from_disk(index_name)
# Query based on index
response = index.query(query, mode="embedding", similarity_top_k=4)
return response
def cleartext(query, output):
"""
Function to clear text
"""
return ["", ""]
with gr.Blocks() as demo:
gr.Markdown(
"""
<h1><center><b>Portuguese VideoQues</center></h1>
""")
gr.Markdown(
"""
Portuguese VideoQues answers your queries on any Portuguese video.
""")
with gr.Row():
with gr.Column():
url = gr.Textbox(lines=1, label="Enter Youtube Video link.")
openaikey = gr.Textbox(lines=1, label="Enter Your OpenAI key.")
submit1_button = gr.Button("Submit")
ans1_output = gr.Textbox(label="Status.")
clear1_button = gr.Button("Clear")
with gr.Column():
query = gr.Textbox(lines=2, label="Enter Your Query.")
submit2_button = gr.Button("Submit")
ans2_output = gr.Textbox(label="Answer.")
clear2_button = gr.Button("Clear")
# Submit button for showing YT Video thumbnail.
submit1_button.click(createindex, inputs=[
url, openaikey], outputs=[ans1_output])
# Submit button for submitting query.
submit2_button.click(videoques, inputs=[
query, openaikey], outputs=[ans2_output])
# Clear button for clearing query and answer.
clear1_button.click(cleartext, inputs=[
url, ans1_output], outputs=[url, ans1_output])
# Clear button for clearing query and answer.
clear2_button.click(cleartext, inputs=[query, ans2_output], outputs=[
query, ans2_output])
demo.launch(debug=True)