Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
import torch | |
import threading | |
from PIL import Image | |
MODEL_ID = "cagliostrolab/animagine-xl-3.1" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
else: | |
pipe = DiffusionPipeline.from_pretrained(MODEL_ID, use_safetensors=True) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1536 | |
def latents_to_rgb(latents): | |
weights = ( | |
(60, -60, 25, -70), | |
(60, -5, 15, -50), | |
(60, 10, -5, -35) | |
) | |
weights_tensor = torch.tensor(weights, dtype=latents.dtype, device=latents.device).T | |
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype, device=latents.device) | |
rgb_tensor = torch.einsum("...lxy,lr -> ...rxy", latents, weights_tensor) + biases_tensor.view(-1, 1, 1) | |
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy() | |
image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions | |
pil_image = Image.fromarray(image_array) | |
resized_image = pil_image.resize((pil_image.size[0] * 2, pil_image.size[1] * 2), Image.LANCZOS) # Resize 128x128 * ... | |
return resized_image | |
class BaseGenerator: | |
def __init__(self, pipe): | |
self.pipe = pipe | |
self.image = None | |
self.new_image_event = threading.Event() | |
self.generation_finished = threading.Event() | |
self.intermediate_image_concurrency(3) | |
def intermediate_image_concurrency(self, concurrency): | |
self.concurrency = concurrency | |
def decode_tensors(self, pipe, step, timestep, callback_kwargs): | |
latents = callback_kwargs["latents"] | |
if step % self.concurrency == 0: # every how many steps | |
print(step) | |
self.image = latents_to_rgb(latents) | |
self.new_image_event.set() # Signal that a new image is available | |
return callback_kwargs | |
def show_images(self): | |
while not self.generation_finished.is_set() or self.new_image_event.is_set(): | |
self.new_image_event.wait() # Wait for a new image | |
self.new_image_event.clear() # Clear the event flag | |
if self.image: | |
yield self.image # Yield the new image | |
def generate_images(self, **kwargs): | |
if kwargs.get('randomize_seed', False): | |
kwargs['seed'] = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(kwargs['seed']) | |
self.image = None | |
self.image = self.pipe( | |
height=kwargs['height'], | |
width=kwargs['width'], | |
prompt=kwargs['prompt'], | |
negative_prompt=kwargs['negative_prompt'], | |
guidance_scale=kwargs['guidance_scale'], | |
num_inference_steps=kwargs['num_inference_steps'], | |
generator=generator, | |
callback_on_step_end=self.decode_tensors, | |
callback_on_step_end_tensor_inputs=["latents"], | |
).images[0] | |
print("finish") | |
self.new_image_event.set() # Result image | |
self.generation_finished.set() # Signal that generation is finished | |
def stream(self, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
self.generation_finished.clear() | |
threading.Thread(target=self.generate_images, args=(), kwargs=dict( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
seed=seed, | |
randomize_seed=randomize_seed, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps | |
)).start() | |
return self.show_images() | |
image_generator = BaseGenerator(pipe) | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency): | |
image_generator.intermediate_image_concurrency(concurrency) | |
stream = image_generator.stream( | |
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps | |
) | |
yield None | |
for image in stream: | |
yield image | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Text-to-Image: Display each generation step | |
Gradio template for displaying preview images during generation steps | |
Currently running on {power_device}. | |
""") | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
value="1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer, outdoors, night", | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", | |
) | |
with gr.Row(): | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=832, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1216, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=30.0, | |
step=0.1, | |
value=7.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=76, | |
) | |
concurrency_gui = gr.Slider( | |
label="Number of steps to show the next preview image", | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=3, | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, concurrency_gui], | |
outputs = [result], | |
show_progress="minimal", | |
) | |
demo.queue().launch() |