File size: 19,872 Bytes
0320907
ab7e618
0320907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee2142
0320907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c685143
0320907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734567
a300ef0
 
0320907
 
 
 
 
a300ef0
0320907
 
 
 
 
 
a300ef0
0320907
1734567
 
 
 
 
 
 
a300ef0
 
 
 
 
 
 
1734567
 
 
 
 
 
 
a300ef0
 
 
 
 
 
 
 
 
 
 
 
0320907
 
 
 
 
 
 
 
 
 
 
 
614bb03
0320907
a300ef0
0320907
 
 
 
614bb03
 
0320907
c685143
0320907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import os
import spaces
from typing import Optional

import gradio as gr
import numpy as np
import pandas as pd
import torch
from PIL import Image

from pipeline_interpolated_sd import InterpolationStableDiffusionPipeline
from pipeline_interpolated_sdxl import InterpolationStableDiffusionXLPipeline
from prior import BetaPriorPipeline


os.environ["TOKENIZERS_PARALLELISM"] = "false"

title = r"""
<h1 align="center">PAID: (Prompt-guided) Attention Interpolation of Text-to-Image Diffusion</h1>
"""

description = r"""
<b>Official πŸ€— Gradio demo</b> for <a href='https://github.com/QY-H00/attention-interpolation-diffusion/tree/public' target='_blank'><b>PAID: (Prompt-guided) Attention Interpolation of Text-to-Image Diffusion</b></a>.<br>
We strongly recommend to deploy this demo locally with GPU resources for better experience, especially for XL-series since the GPU resources is limited in this space. <br>
How to use:<br>
1. Input prompt 1, prompt 2 and negative prompt.
2. For <b> Compositional Generation </b> Input the guidance prompt and choose the one you are satisfied!
3. For <b> Image morphing </b> Input the image prompt 1 and image prompt 2, and choose IP-Adapter.
4. For <b> Scale Control </b> Input the same text for prompt 1 and prompt 2, leave image prompt 1 blank and upload image prompt 2. Then choose IP-Adapter or IP-Composition-Adapter.
5. <b> Note that the time required for the SD-series with an exploration size of 10 is around 120 seconds. XL-series with an exploration size 5 is around 5 minutes 30 seconds. </b>
6. Click the <b>Generate</b> button to begin generating images.
7. Enjoy! 😊"""

article = r"""
---
βœ’οΈ **Citation**
<br>
If you found this demo/our paper useful, please consider citing:
```bibtex
@article{he2024aid,
  title={AID: Attention Interpolation of Text-to-Image Diffusion},
  author={He, Qiyuan and Wang, Jinghao and Liu, Ziwei and Yao, Angela},
  journal={arXiv preprint arXiv:2403.17924},
  year={2024}
}
```
πŸ“§ **Contact**
<br>
If you have any questions, please feel free to open an issue in our <a href='https://github.com/QY-H00/attention-interpolation-diffusion/tree/public' target='_blank'><b>Github Repo</b></a> or directly reach us out at <b>[email protected]</b>.
"""

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = False
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
PREVIEW_IMAGES = False

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipeline = InterpolationStableDiffusionPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V4.0_noVAE",
    torch_dtype=torch.float16
)
pipeline.to(device, dtype=torch.float16)


def change_model_fn(model_name: str) -> None:
    global device
    name_mapping = {
        "AOM3": "hogiahien/aom3",
        "SD1.5-512": "stable-diffusion-v1-5/stable-diffusion-v1-5",
        "SD2.1-768": "stabilityai/stable-diffusion-2-1",
        "RealVis-v4.0": "SG161222/Realistic_Vision_V4.0_noVAE",
        "SDXL-1024": "stabilityai/stable-diffusion-xl-base-1.0",
        "Playground-XL-v2": "playgroundai/playground-v2.5-1024px-aesthetic",
        "Juggernaut-XL-v9": "RunDiffusion/Juggernaut-XL-v9"
    }
    if device == torch.device("cpu"):
            dtype = torch.float16
    else:
        dtype = torch.float16
    if "XL" not in model_name:
        globals()["pipeline"] = InterpolationStableDiffusionPipeline.from_pretrained(
            name_mapping[model_name], torch_dtype=dtype
        )
        globals()["pipeline"].to(device, dtype=torch.float16)
    else:
        globals()["pipeline"] = InterpolationStableDiffusionXLPipeline.from_pretrained(
            name_mapping[model_name], torch_dtype=dtype
        )
        globals()["pipeline"].to(device)


def change_adapter_fn(adapter_name: str) -> None:
    global pipeline
    if adapter_name == "IP-Adapter":
        if isinstance(pipeline, InterpolationStableDiffusionPipeline):
            pipeline.load_aid_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
        else:
            pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", "", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors")
    elif adapter_name == "IP-Composition-Adapter":
        if isinstance(pipeline, InterpolationStableDiffusionPipeline):
            pipeline.load_aid_ip_adapter("ostris/ip-composition-adapter", subfolder="", weight_name="ip_plus_composition_sd15.safetensors")
        else:
            pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", subfolder="", weight_name="ip_plus_composition_sdxl.safetensors")
    else:
        pipeline.load_aid()


def save_image(img, index):
    unique_name = f"{index}.png"
    img = Image.fromarray(img)
    img.save(unique_name)
    return unique_name


def get_example() -> list[list[str | float | int ]]:
    case = [
        [
            "A statue",
            "A dragon",
            "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
            "",
            None,
            None,
            50,
            10,
            5,
            5.0,
            0.5,
            "RealVis-v4.0",
            "None",
            0,
            True,
        ],
        [
            "A photo of a statue",
            "Het meisje met de parel, by Vermeer",
            "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
            "",
            Image.open("asset/statue.jpg"),
            Image.open("asset/vermeer.jpg"),
            50,
            10,
            5,
            5.0,
            0.5,
            "RealVis-v4.0",
            "IP-Adapter",
            0,
            True,
        ],
        [
            "A boy is smiling",
            "A boy is smiling",
            "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
            "",
            None,
            Image.open("asset/vermeer.jpg"),
            50,
            10,
            5,
            5.0,
            0.5,
            "RealVis-v4.0",
            "IP-Composition-Adapter",
            0,
            True,
        ],
        [
            "masterpiece, best quality, very aesthetic, absurdres, A dog",
            "masterpiece, best quality, very aesthetic, absurdres, A car",
            "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
            "masterpiece, best quality, very aesthetic, absurdres, the toy, named 'Dog-Car', is designed as a dog figure with car wheels instead of feet",
            None,
            None,
            50,
            5,
            5,
            5.0,
            0.5,
            "RealVis-v4.0",
            "None",
            1002,
            True
        ],
        [
            "masterpiece, best quality, very aesthetic, absurdres, A dog",
            "masterpiece, best quality, very aesthetic, absurdres, A car",
            "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
            "masterpiece, best quality, very aesthetic, absurdres, a dog is driving a car",
            None,
            None,
            28,
            5,
            5,
            5.0,
            0.5,
            "Playground-XL-v2",
            "None",
            1002,
            True
        ]
        # [
        #     "masterpiece, best quality, very aesthetic, absurdres, A cat is smiling, face portrait",
        #     "masterpiece, best quality, very aesthetic, absurdres, A beautiful lady, face portrait",
        #     "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        #     None,
        #     None,
        #     None,
        #     28,
        #     7,
        #     5,
        #     5.0,
        #     1.0,
        #     "Playground-XL-v2"
        # ],
        # [
        #     "masterpiece, best quality, very aesthetic, absurdres, A dog",
        #     "masterpiece, best quality, very aesthetic, absurdres, A car",
        #     "nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
        #     "masterpiece, best quality, very aesthetic, absurdres, the toy, named 'Dog-Car', is designed as a dog figure with car wheels instead of feet",
        #     None,
        #     None,
        #     28,
        #     5,
        #     5,
        #     5.0,
        #     0.5,
        #     "Playground-XL-v2"
        # ],

    ]
    return case


def change_generate_button_fn(enable: int) -> gr.Button:
    if enable == 0:
        return gr.Button(interactive=False, value="Switching Model...")
    else:
        return gr.Button(interactive=True, value="Generate")


def dynamic_gallery_fn(interpolation_size: int):
    return gr.Gallery(
        label="Result", show_label=False, rows=1, columns=interpolation_size
    )

@spaces.GPU(duration=110)
@torch.no_grad()
def generate(
    prompt1,
    prompt2,
    negative_prompt,
    guide_prompt=None,
    image_prompt1=None,
    image_prompt2=None,
    num_inference_steps=28,
    exploration_size=16,
    interpolation_size=7,
    guidance_scale=5.0,
    warmup_ratio=0.5,
    seed=0,
    same_latent=True,
) -> np.ndarray:
    global pipeline
    global adapter_choice
    beta_pipe = BetaPriorPipeline(pipeline)
    if guide_prompt == "":
        guide_prompt = None
    generator = (
        torch.cuda.manual_seed(seed)
        if torch.cuda.is_available()
        else torch.manual_seed(seed)
    )
    size = pipeline.unet.config.sample_size
    latent1 = torch.randn((1, 4, size, size,), device="cuda", dtype=pipeline.unet.dtype, generator=generator)
    if same_latent:
        latent2 = latent1.clone()
    else:
        latent2 = torch.randn((1, 4, size, size,), device="cuda", dtype=pipeline.unet.dtype, generator=generator)

    if image_prompt1 is None and image_prompt2 is None:
        pipeline.load_aid()
    elif (image_prompt1 is None and image_prompt2 is not None):
        if adapter_choice.value == "IP-Adapter":
            if isinstance(pipeline, InterpolationStableDiffusionPipeline):
                pipeline.load_aid_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
            else:
                pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", "", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors")
        elif adapter_choice.value == "IP-Composition-Adapter":
            if isinstance(pipeline, InterpolationStableDiffusionPipeline):
                pipeline.load_aid_ip_adapter("ostris/ip-composition-adapter", subfolder="", weight_name="ip_plus_composition_sd15.safetensors")
            else:
                pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", subfolder="", weight_name="ip_plus_composition_sdxl.safetensors")
    elif (image_prompt1 is None and image_prompt2 is not None):
        if adapter_choice.value == "IP-Adapter":
            if isinstance(pipeline, InterpolationStableDiffusionPipeline):
                pipeline.load_aid_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin", early="scale_control")
            else:
                pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", "", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors", early="scale_control")
        elif adapter_choice.value == "IP-Composition-Adapter":
            if isinstance(pipeline, InterpolationStableDiffusionPipeline):
                pipeline.load_aid_ip_adapter("ostris/ip-composition-adapter", subfolder="", weight_name="ip_plus_composition_sd15.safetensors", early="scale_control")
            else:
                pipeline.load_aid_ip_adapter("ozzygt/sdxl-ip-adapter", subfolder="", weight_name="ip_plus_composition_sdxl.safetensors", early="scale_control")
    else:
        raise ValueError("To use scale control, please provide only the right image; To use image morphing, please provide images from both side.")
    images = beta_pipe.generate_interpolation(
        gr.Progress(),
        prompt1,
        prompt2,
        negative_prompt,
        latent1,
        latent2,
        num_inference_steps,
        image_start=image_prompt1,
        image_end=image_prompt2,
        exploration_size=exploration_size,
        interpolation_size=interpolation_size,
        output_type="np",
        guide_prompt=guide_prompt,
        guidance_scale=guidance_scale,
        warmup_ratio=warmup_ratio
    )
    return images


interpolation_size = None

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    with gr.Group():
        with gr.Column():
            with gr.Row():
                prompt1 = gr.Text(
                    label="Prompt 1",
                    max_lines=3,
                    placeholder="Enter the First Prompt",
                    interactive=True,
                    value="A statue",
                )
                prompt2 = gr.Text(
                    label="Prompt 2",
                    max_lines=3,
                    placeholder="Enter the Second Prompt",
                    interactive=True,
                    value="A dragon",
                )
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=3,
                placeholder="Enter a Negative Prompt",
                interactive=True,
                value="nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
            )
            guidance_prompt = gr.Text(
                label="Guidance prompt (Optional)",
                max_lines=3,
                placeholder="Enter a Guidance Prompt",
                interactive=True,
                value="",
            )
            model_choice = gr.Dropdown(
                ["RealVis-v4.0", "SD1.4-512", "SD1.5-512", "SD2.1-768", "AOM3", "SDXL-1024", "Playground-XL-v2", "Juggernaut-XL-v9"],
                label="Model",
                value="RealVis-v4.0",
                interactive=True,
                info="All series are running on float16; SD2.1 does not support IP-Adapter; XL-Series takes longer time",
            )

    with gr.Group():
        with gr.Row():
            image_prompt1 = gr.Image(label="Image Prompt 1 (Optional)", interactive=True)
            image_prompt2 = gr.Image(label="Image Prompt 2 (Optional)", interactive=True)
        adapter_choice = gr.Dropdown(
            ["None", "IP-Adapter", "IP-Composition-Adapter"],
            label="IP-Adapter",
            value="None",
            interactive=True,
            info="Only set to IP-Adapter or IP-Composition-Adapter when using image prompt",
        )

    with gr.Group():
        result = gr.Gallery(label="Result", show_label=False, rows=1, columns=3)
        generate_button = gr.Button(value="Generate", variant="primary")

    with gr.Accordion("Advanced options", open=True):
        with gr.Group():
            with gr.Row():
                with gr.Column():
                    interpolation_size = gr.Slider(
                        label="Interpolation Size",
                        minimum=3,
                        maximum=5,
                        step=1,
                        value=3,
                        info="Interpolation size includes the start and end images",
                    )
                    exploration_size = gr.Slider(
                        label="Exploration Size",
                        minimum=5,
                        maximum=10,
                        step=1,
                        value=5,
                        info="Exploration size has to be larger than interpolation size",
                    )
        with gr.Row():
            with gr.Column():
                warmup_ratio = gr.Slider(
                    label="Warmup Ratio",
                    minimum=0.02,
                    maximum=1,
                    step=0.01,
                    value=0.5,
                    interactive=True,
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0,
                    maximum=20,
                    step=0.1,
                    value=5.0,
                    interactive=True,
                )
        num_inference_steps = gr.Slider(
            label="Inference Steps",
            minimum=25,
            maximum=50,
            step=1,
            value=50,
            interactive=True,
        )
        with gr.Column():
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            same_latent = gr.Checkbox(
                label="Same latent",
                value=False,
                info="Use the same latent for start and end images",
                show_label=True,
            )

    gr.Examples(
        examples=get_example(),
        inputs=[
            prompt1,
            prompt2,
            negative_prompt,
            guidance_prompt,
            image_prompt1,
            image_prompt2,
            num_inference_steps,
            exploration_size,
            interpolation_size,
            guidance_scale,
            warmup_ratio,
            model_choice,
            adapter_choice,
            seed,
            same_latent,
        ],
        cache_examples=CACHE_EXAMPLES,
    )

    model_choice.change(
        fn=change_generate_button_fn,
        inputs=gr.Number(0, visible=False),
        outputs=generate_button,
    ).then(fn=change_model_fn, inputs=model_choice).then(
        fn=change_generate_button_fn,
        inputs=gr.Number(1, visible=False),
        outputs=generate_button,
    )

    adapter_choice.change(
        fn=change_generate_button_fn,
        inputs=gr.Number(0, visible=False),
        outputs=generate_button,
    ).then(fn=change_adapter_fn, inputs=[adapter_choice]).then(
        fn=change_generate_button_fn,
        inputs=gr.Number(1, visible=False),
        outputs=generate_button,
    )

    inputs = [
        prompt1,
        prompt2,
        negative_prompt,
        guidance_prompt,
        image_prompt1,
        image_prompt2,
        num_inference_steps,
        exploration_size,
        interpolation_size,
        guidance_scale,
        warmup_ratio,
        seed,
        same_latent,
    ]
    generate_button.click(
        fn=dynamic_gallery_fn,
        inputs=interpolation_size,
        outputs=result,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
    )
    gr.Markdown(article)

demo.launch()