Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,17 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import threading
|
4 |
import queue
|
5 |
-
from typing import List, Dict, Any, Optional
|
6 |
-
import logging
|
7 |
-
from urllib.parse import urlparse
|
8 |
-
|
9 |
-
import gradio as gr
|
10 |
import torch
|
11 |
import psycopg2
|
12 |
import zlib
|
13 |
import numpy as np
|
14 |
-
from
|
|
|
15 |
from sklearn.preprocessing import normalize
|
16 |
|
17 |
-
# Рекомендуется использовать python-dotenv для загрузки переменных окружения
|
18 |
-
# from dotenv import load_dotenv
|
19 |
-
# load_dotenv()
|
20 |
-
|
21 |
# Настройка логирования
|
22 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
|
@@ -60,10 +54,12 @@ except FileNotFoundError:
|
|
60 |
movies_data = []
|
61 |
|
62 |
# Очередь для необработанных фильмов
|
63 |
-
movies_queue
|
64 |
|
65 |
-
#
|
66 |
processing_complete = False
|
|
|
|
|
67 |
search_in_progress = False
|
68 |
|
69 |
# Блокировка для доступа к базе данных
|
@@ -83,19 +79,20 @@ def get_db_connection():
|
|
83 |
|
84 |
def setup_database():
|
85 |
"""Настраивает базу данных: создает расширение, таблицы и индексы."""
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
99 |
CREATE TABLE {embeddings_table} (
|
100 |
movie_id INTEGER PRIMARY KEY,
|
101 |
embedding_crc32 BIGINT,
|
@@ -104,10 +101,10 @@ def setup_database():
|
|
104 |
embedding vector(1024)
|
105 |
);
|
106 |
CREATE INDEX ON {embeddings_table} (string_crc32);
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
CREATE TABLE {query_cache_table} (
|
112 |
query_crc32 BIGINT PRIMARY KEY,
|
113 |
query TEXT,
|
@@ -117,51 +114,60 @@ def setup_database():
|
|
117 |
);
|
118 |
CREATE INDEX ON {query_cache_table} (query_crc32);
|
119 |
CREATE INDEX ON {query_cache_table} (created_at);
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
|
128 |
# Настраиваем базу данных при запуске
|
129 |
setup_database()
|
130 |
|
131 |
-
def calculate_crc32(text
|
132 |
"""Вычисляет CRC32 для строки."""
|
133 |
return zlib.crc32(text.encode('utf-8')) & 0xFFFFFFFF
|
134 |
|
135 |
-
def encode_string(text
|
136 |
"""Кодирует строку в эмбеддинг."""
|
137 |
embedding = model.encode(text, convert_to_tensor=True, normalize_embeddings=True)
|
138 |
return embedding.cpu().numpy()
|
139 |
|
140 |
-
def get_movies_without_embeddings()
|
141 |
"""Получает список фильм��в, для которых нужно создать эмбеддинги."""
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
|
|
|
|
|
161 |
"""Получает эмбеддинг из базы данных."""
|
162 |
try:
|
163 |
with conn.cursor() as cur:
|
164 |
-
cur.execute(f"SELECT embedding FROM {table_name} WHERE {crc32_column} = %s AND model_name = %s",
|
|
|
165 |
result = cur.fetchone()
|
166 |
if result and result[0]:
|
167 |
# Нормализуем эмбеддинг после извлечения из БД
|
@@ -170,16 +176,17 @@ def get_embedding_from_db(conn, table_name: str, crc32_column: str, crc32_value:
|
|
170 |
logging.error(f"Ошибка при получении эмбеддинга из БД: {e}")
|
171 |
return None
|
172 |
|
173 |
-
def insert_embedding(conn, table_name
|
174 |
"""Вставляет эмбеддинг в базу данных."""
|
175 |
try:
|
176 |
# Нормализуем эмбеддинг перед сохранением
|
177 |
normalized_embedding = normalize(embedding.reshape(1, -1))[0]
|
178 |
with conn.cursor() as cur:
|
179 |
cur.execute(f"""
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
183 |
""", (movie_id, embedding_crc32, string_crc32, model_name, normalized_embedding.tolist()))
|
184 |
conn.commit()
|
185 |
return True
|
@@ -191,10 +198,12 @@ def insert_embedding(conn, table_name: str, movie_id: int, embedding_crc32: int,
|
|
191 |
def process_movies():
|
192 |
"""Обрабатывает фильмы, создавая для них эмбеддинги."""
|
193 |
global processing_complete
|
|
|
194 |
logging.info("Начало обработки фильмов.")
|
195 |
-
|
196 |
# Получаем список фильмов, которые нужно обработать
|
197 |
movies_to_process = get_movies_without_embeddings()
|
|
|
198 |
if not movies_to_process:
|
199 |
logging.info("Все фильмы уже обработаны.")
|
200 |
processing_complete = True
|
@@ -204,51 +213,55 @@ def process_movies():
|
|
204 |
for movie in movies_to_process:
|
205 |
movies_queue.put(movie)
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
try:
|
212 |
-
while not movies_queue.empty():
|
213 |
-
if search_in_progress:
|
214 |
-
time.sleep(1)
|
215 |
-
continue
|
216 |
-
|
217 |
-
batch = []
|
218 |
-
while not movies_queue.empty() and len(batch) < batch_size:
|
219 |
-
try:
|
220 |
-
movie = movies_queue.get_nowait()
|
221 |
-
batch.append(movie)
|
222 |
-
except queue.Empty:
|
223 |
-
break
|
224 |
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
break
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
embedding_string = f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genresList']}\nОписание: {movie['description']}"
|
231 |
-
string_crc32 = calculate_crc32(embedding_string)
|
232 |
-
|
233 |
-
# Проверяем существующий эмбеддинг
|
234 |
-
existing_embedding = get_embedding_from_db(conn, embeddings_table, "string_crc32", string_crc32, model_name)
|
235 |
-
if existing_embedding is None:
|
236 |
-
embedding = encode_string(embedding_string)
|
237 |
-
embedding_crc32 = calculate_crc32(str(embedding.tolist()))
|
238 |
-
if insert_embedding(conn, embeddings_table, movie['id'], embedding_crc32, string_crc32, embedding):
|
239 |
-
logging.info(f"Сохранен эмбеддинг для '{movie['name']}'")
|
240 |
-
else:
|
241 |
-
logging.error(f"Ошибка сохранения эмбеддинга для '{movie['name']}'")
|
242 |
-
else:
|
243 |
-
logging.info(f"Эмбеддинг для '{movie['name']}' уже существует")
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
def get_movie_embeddings(conn)
|
252 |
"""Загружает все эмбеддинги фильмов из базы данных."""
|
253 |
movie_embeddings = {}
|
254 |
try:
|
@@ -265,97 +278,96 @@ def get_movie_embeddings(conn) -> Dict[str, np.ndarray]:
|
|
265 |
logging.error(f"Ошибка при загрузке эмбеддингов фильмов: {e}")
|
266 |
return movie_embeddings
|
267 |
|
268 |
-
def
|
269 |
-
"""Очищает устаревшие записи из кэша запросов."""
|
270 |
-
try:
|
271 |
-
with conn.cursor() as cur:
|
272 |
-
# Получаем общий размер кэша
|
273 |
-
cur.execute(f"SELECT pg_total_relation_size('{query_cache_table}')")
|
274 |
-
total_size = cur.fetchone()[0]
|
275 |
-
|
276 |
-
if total_size > MAX_CACHE_SIZE:
|
277 |
-
# Удаляем старые записи, пока размер не стан��т меньше максимального
|
278 |
-
cur.execute(f"""
|
279 |
-
DELETE FROM {query_cache_table}
|
280 |
-
WHERE ctid IN (
|
281 |
-
SELECT ctid
|
282 |
-
FROM {query_cache_table}
|
283 |
-
ORDER BY created_at ASC
|
284 |
-
LIMIT (SELECT COUNT(*) / 2 FROM {query_cache_table})
|
285 |
-
)
|
286 |
-
""")
|
287 |
-
conn.commit()
|
288 |
-
logging.info("Кэш запросов очищен.")
|
289 |
-
except Exception as e:
|
290 |
-
logging.error(f"Ошибка при очистке кэша запросов: {e}")
|
291 |
-
conn.rollback()
|
292 |
-
|
293 |
-
def search_movies(query: str, top_k: int = 10) -> List[Dict[str, Any]]:
|
294 |
"""Выполняет поиск фильмов по запросу."""
|
295 |
global search_in_progress
|
296 |
search_in_progress = True
|
297 |
-
|
|
|
298 |
try:
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
|
303 |
-
|
|
|
304 |
|
305 |
-
|
306 |
-
query_embedding =
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
-
results = []
|
321 |
-
for score, movie_name in top_results:
|
322 |
-
movie = next((m for m in movies_data if m['name'] == movie_name), None)
|
323 |
-
if movie:
|
324 |
-
results.append({
|
325 |
-
"name": movie['name'],
|
326 |
-
"year": movie['year'],
|
327 |
-
"genres": movie['genresList'],
|
328 |
-
"description": movie['description'],
|
329 |
-
"score": float(score)
|
330 |
-
})
|
331 |
-
|
332 |
-
return results
|
333 |
except Exception as e:
|
334 |
-
logging.error(f"Ошибка при
|
335 |
-
return
|
|
|
336 |
finally:
|
|
|
|
|
337 |
search_in_progress = False
|
338 |
|
339 |
# Запускаем обработку фильмов в отдельном потоке
|
340 |
-
threading.Thread(target=process_movies
|
|
|
341 |
|
342 |
# Создаем интерфейс Gradio
|
343 |
-
def gradio_search(query: str) -> str:
|
344 |
-
results = search_movies(query)
|
345 |
-
output = ""
|
346 |
-
for movie in results:
|
347 |
-
output += f"Название: {movie['name']} ({movie['year']})\n"
|
348 |
-
output += f"Жанры: {', '.join(movie['genres'])}\n"
|
349 |
-
output += f"Описание: {movie['description']}\n"
|
350 |
-
output += f"Релевантность: {movie['score']:.2f}\n\n"
|
351 |
-
return output
|
352 |
-
|
353 |
iface = gr.Interface(
|
354 |
-
fn=
|
355 |
-
inputs="
|
356 |
-
outputs="
|
357 |
-
title="
|
358 |
-
description="Введите
|
359 |
)
|
360 |
|
|
|
361 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
import os
|
4 |
import time
|
5 |
import threading
|
6 |
import queue
|
|
|
|
|
|
|
|
|
|
|
7 |
import torch
|
8 |
import psycopg2
|
9 |
import zlib
|
10 |
import numpy as np
|
11 |
+
from urllib.parse import urlparse
|
12 |
+
import logging
|
13 |
from sklearn.preprocessing import normalize
|
14 |
|
|
|
|
|
|
|
|
|
15 |
# Настройка логирования
|
16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
17 |
|
|
|
54 |
movies_data = []
|
55 |
|
56 |
# Очередь для необработанных фильмов
|
57 |
+
movies_queue = queue.Queue()
|
58 |
|
59 |
+
# Флаг, указывающий, что обработка фильмов завершена
|
60 |
processing_complete = False
|
61 |
+
|
62 |
+
# Флаг, указывающий, что выполняется поиск
|
63 |
search_in_progress = False
|
64 |
|
65 |
# Блокировка для доступа к базе данных
|
|
|
79 |
|
80 |
def setup_database():
|
81 |
"""Настраивает базу данных: создает расширение, таблицы и индексы."""
|
82 |
+
conn = get_db_connection()
|
83 |
+
if conn is None:
|
84 |
+
return
|
85 |
+
|
86 |
+
try:
|
87 |
+
with conn.cursor() as cur:
|
88 |
+
# Создаем расширение pgvector если его нет
|
89 |
+
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
90 |
+
|
91 |
+
# Удаляем существующие таблицы если они есть
|
92 |
+
# cur.execute(f"DROP TABLE IF EXISTS {embeddings_table}, {query_cache_table};")
|
93 |
+
|
94 |
+
# Создаем таблицу для хранения эмбеддингов фильмов
|
95 |
+
cur.execute(f"""
|
96 |
CREATE TABLE {embeddings_table} (
|
97 |
movie_id INTEGER PRIMARY KEY,
|
98 |
embedding_crc32 BIGINT,
|
|
|
101 |
embedding vector(1024)
|
102 |
);
|
103 |
CREATE INDEX ON {embeddings_table} (string_crc32);
|
104 |
+
""")
|
105 |
+
|
106 |
+
# Создаем таблицу для кэширования запросов
|
107 |
+
cur.execute(f"""
|
108 |
CREATE TABLE {query_cache_table} (
|
109 |
query_crc32 BIGINT PRIMARY KEY,
|
110 |
query TEXT,
|
|
|
114 |
);
|
115 |
CREATE INDEX ON {query_cache_table} (query_crc32);
|
116 |
CREATE INDEX ON {query_cache_table} (created_at);
|
117 |
+
""")
|
118 |
+
|
119 |
+
conn.commit()
|
120 |
+
logging.info("База данных успешно настроена.")
|
121 |
+
except Exception as e:
|
122 |
+
logging.error(f"Ошибка при настройке базы данных: {e}")
|
123 |
+
conn.rollback()
|
124 |
+
finally:
|
125 |
+
conn.close()
|
126 |
|
127 |
# Настраиваем базу данных при запуске
|
128 |
setup_database()
|
129 |
|
130 |
+
def calculate_crc32(text):
|
131 |
"""Вычисляет CRC32 для строки."""
|
132 |
return zlib.crc32(text.encode('utf-8')) & 0xFFFFFFFF
|
133 |
|
134 |
+
def encode_string(text):
|
135 |
"""Кодирует строку в эмбеддинг."""
|
136 |
embedding = model.encode(text, convert_to_tensor=True, normalize_embeddings=True)
|
137 |
return embedding.cpu().numpy()
|
138 |
|
139 |
+
def get_movies_without_embeddings():
|
140 |
"""Получает список фильм��в, для которых нужно создать эмбеддинги."""
|
141 |
+
conn = get_db_connection()
|
142 |
+
if conn is None:
|
143 |
+
return []
|
144 |
+
|
145 |
+
movies_to_process = []
|
146 |
+
try:
|
147 |
+
with conn.cursor() as cur:
|
148 |
+
# Получаем список ID фильмов, которые уже есть в базе
|
149 |
+
cur.execute(f"SELECT movie_id FROM {embeddings_table}")
|
150 |
+
existing_ids = {row[0] for row in cur.fetchall()}
|
151 |
+
|
152 |
+
# Фильтруем только те фильмы, которых нет в базе
|
153 |
+
for movie in movies_data:
|
154 |
+
if movie['id'] not in existing_ids:
|
155 |
+
movies_to_process.append(movie)
|
156 |
+
|
157 |
+
logging.info(f"Найдено {len(movies_to_process)} фильмов для обработки.")
|
158 |
+
except Exception as e:
|
159 |
+
logging.error(f"Ошибка при получении списка фильмов для обработки: {e}")
|
160 |
+
finally:
|
161 |
+
conn.close()
|
162 |
|
163 |
+
return movies_to_process
|
164 |
+
|
165 |
+
def get_embedding_from_db(conn, table_name, crc32_column, crc32_value, model_name):
|
166 |
"""Получает эмбеддинг из базы данных."""
|
167 |
try:
|
168 |
with conn.cursor() as cur:
|
169 |
+
cur.execute(f"SELECT embedding FROM {table_name} WHERE {crc32_column} = %s AND model_name = %s",
|
170 |
+
(crc32_value, model_name))
|
171 |
result = cur.fetchone()
|
172 |
if result and result[0]:
|
173 |
# Нормализуем эмбеддинг после извлечения из БД
|
|
|
176 |
logging.error(f"Ошибка при получении эмбеддинга из БД: {e}")
|
177 |
return None
|
178 |
|
179 |
+
def insert_embedding(conn, table_name, movie_id, embedding_crc32, string_crc32, embedding):
|
180 |
"""Вставляет эмбеддинг в базу данных."""
|
181 |
try:
|
182 |
# Нормализуем эмбеддинг перед сохранением
|
183 |
normalized_embedding = normalize(embedding.reshape(1, -1))[0]
|
184 |
with conn.cursor() as cur:
|
185 |
cur.execute(f"""
|
186 |
+
INSERT INTO {table_name}
|
187 |
+
(movie_id, embedding_crc32, string_crc32, model_name, embedding)
|
188 |
+
VALUES (%s, %s, %s, %s, %s)
|
189 |
+
ON CONFLICT (movie_id) DO NOTHING
|
190 |
""", (movie_id, embedding_crc32, string_crc32, model_name, normalized_embedding.tolist()))
|
191 |
conn.commit()
|
192 |
return True
|
|
|
198 |
def process_movies():
|
199 |
"""Обрабатывает фильмы, создавая для них эмбеддинги."""
|
200 |
global processing_complete
|
201 |
+
|
202 |
logging.info("Начало обработки фильмов.")
|
203 |
+
|
204 |
# Получаем список фильмов, которые нужно обработать
|
205 |
movies_to_process = get_movies_without_embeddings()
|
206 |
+
|
207 |
if not movies_to_process:
|
208 |
logging.info("Все фильмы уже обработаны.")
|
209 |
processing_complete = True
|
|
|
213 |
for movie in movies_to_process:
|
214 |
movies_queue.put(movie)
|
215 |
|
216 |
+
conn = get_db_connection()
|
217 |
+
if conn is None:
|
218 |
+
processing_complete = True
|
219 |
+
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
try:
|
222 |
+
while not movies_queue.empty():
|
223 |
+
if search_in_progress:
|
224 |
+
time.sleep(1)
|
225 |
+
continue
|
226 |
+
|
227 |
+
batch = []
|
228 |
+
while not movies_queue.empty() and len(batch) < batch_size:
|
229 |
+
try:
|
230 |
+
movie = movies_queue.get_nowait()
|
231 |
+
batch.append(movie)
|
232 |
+
except queue.Empty:
|
233 |
break
|
234 |
|
235 |
+
if not batch:
|
236 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
logging.info(f"Обработка пакета из {len(batch)} фильмов...")
|
239 |
+
|
240 |
+
for movie in batch:
|
241 |
+
embedding_string = f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genresList']}\nОписание: {movie['description']}"
|
242 |
+
string_crc32 = calculate_crc32(embedding_string)
|
243 |
+
|
244 |
+
# Проверяем существующий эмбеддинг
|
245 |
+
existing_embedding = get_embedding_from_db(conn, embeddings_table, "string_crc32", string_crc32, model_name)
|
246 |
+
|
247 |
+
if existing_embedding is None:
|
248 |
+
embedding = encode_string(embedding_string)
|
249 |
+
embedding_crc32 = calculate_crc32(str(embedding.tolist()))
|
250 |
+
|
251 |
+
if insert_embedding(conn, embeddings_table, movie['id'], embedding_crc32, string_crc32, embedding):
|
252 |
+
logging.info(f"Сохранен эмбеддинг для '{movie['name']}'")
|
253 |
+
else:
|
254 |
+
logging.error(f"Ошибка сохранения эмбеддинга для '{movie['name']}'")
|
255 |
+
else:
|
256 |
+
logging.info(f"Эмбеддинг для '{movie['name']}' уже существует")
|
257 |
+
except Exception as e:
|
258 |
+
logging.error(f"Ошибка при обработке фильмов: {e}")
|
259 |
+
finally:
|
260 |
+
conn.close()
|
261 |
+
processing_complete = True
|
262 |
+
logging.info("Обработка фильмов завершена")
|
263 |
|
264 |
+
def get_movie_embeddings(conn):
|
265 |
"""Загружает все эмбеддинги фильмов из базы данных."""
|
266 |
movie_embeddings = {}
|
267 |
try:
|
|
|
278 |
logging.error(f"Ошибка при загрузке эмбеддингов фильмов: {e}")
|
279 |
return movie_embeddings
|
280 |
|
281 |
+
def search_movies(query, top_k=10):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
"""Выполняет поиск фильмов по запросу."""
|
283 |
global search_in_progress
|
284 |
search_in_progress = True
|
285 |
+
start_time = time.time()
|
286 |
+
|
287 |
try:
|
288 |
+
conn = get_db_connection()
|
289 |
+
if conn is None:
|
290 |
+
return "<p>Ошибка подключения к базе данных</p>"
|
291 |
|
292 |
+
query_crc32 = calculate_crc32(query)
|
293 |
+
query_embedding = get_embedding_from_db(conn, query_cache_table, "query_crc32", query_crc32, model_name)
|
294 |
|
295 |
+
if query_embedding is None:
|
296 |
+
query_embedding = encode_string(query)
|
297 |
|
298 |
+
try:
|
299 |
+
with conn.cursor() as cur:
|
300 |
+
cur.execute(f"""
|
301 |
+
INSERT INTO {query_cache_table} (query_crc32, query, model_name, embedding)
|
302 |
+
VALUES (%s, %s, %s, %s)
|
303 |
+
ON CONFLICT (query_crc32) DO NOTHING
|
304 |
+
""", (query_crc32, query, model_name, query_embedding.tolist()))
|
305 |
+
conn.commit()
|
306 |
+
logging.info(f"Сохранен новый эмбеддинг запроса: {query}")
|
307 |
+
except Exception as e:
|
308 |
+
logging.error(f"Ошибка при сохранении эмбеддинга запроса: {e}")
|
309 |
+
conn.rollback()
|
310 |
|
311 |
+
# Используем косинусное расстояние для поиска
|
312 |
+
try:
|
313 |
+
with conn.cursor() as cur:
|
314 |
+
cur.execute(f"""
|
315 |
+
WITH query_embedding AS (
|
316 |
+
SELECT embedding
|
317 |
+
FROM {query_cache_table}
|
318 |
+
WHERE query_crc32 = %s
|
319 |
+
)
|
320 |
+
SELECT m.movie_id, 1 - (m.embedding <=> (SELECT embedding FROM query_embedding)) as similarity
|
321 |
+
FROM {embeddings_table} m, query_embedding
|
322 |
+
ORDER BY similarity DESC
|
323 |
+
LIMIT %s
|
324 |
+
""", (query_crc32, top_k))
|
325 |
+
|
326 |
+
results = cur.fetchall()
|
327 |
+
logging.info(f"Найдено {len(results)} результатов поиска.")
|
328 |
+
except Exception as e:
|
329 |
+
logging.error(f"Ошибка при выполнении поискового запроса: {e}")
|
330 |
+
results = []
|
331 |
|
332 |
+
results_html = "<ol>"
|
333 |
+
for movie_id, similarity in results:
|
334 |
+
# Находим название фильма по ID
|
335 |
+
movie_title = None
|
336 |
+
for movie in movies_data:
|
337 |
+
if movie['id'] == movie_id:
|
338 |
+
movie_title = movie['name']
|
339 |
+
break
|
340 |
|
341 |
+
if movie_title:
|
342 |
+
results_html += f"<li><strong>{movie_title}</strong> (Сходство: {similarity:.4f})</li>"
|
343 |
+
results_html += "</ol>"
|
344 |
+
|
345 |
+
search_time = time.time() - start_time
|
346 |
+
logging.info(f"Поиск выполнен за {search_time:.2f} секунд.")
|
347 |
+
|
348 |
+
return f"<p>Время поиска: {search_time:.2f} сек</p>{results_html}"
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
except Exception as e:
|
351 |
+
logging.error(f"Ошибка при выполнении поиска: {e}")
|
352 |
+
return "<p>Произошла ошибка при выполнении поиска.</p>"
|
353 |
+
|
354 |
finally:
|
355 |
+
if conn:
|
356 |
+
conn.close()
|
357 |
search_in_progress = False
|
358 |
|
359 |
# Запускаем обработку фильмов в отдельном потоке
|
360 |
+
processing_thread = threading.Thread(target=process_movies)
|
361 |
+
processing_thread.start()
|
362 |
|
363 |
# Создаем интерфейс Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
iface = gr.Interface(
|
365 |
+
fn=search_movies,
|
366 |
+
inputs=gr.Textbox(lines=2, placeholder="Введите запрос для поиска фильмов..."),
|
367 |
+
outputs=gr.HTML(label="Результаты поиска"),
|
368 |
+
title="Семантический поиск фильмов",
|
369 |
+
description="Введите описание фильма, который вы ищете, и система найдет наиболее похожие фильмы."
|
370 |
)
|
371 |
|
372 |
+
# Запускаем интерфейс
|
373 |
iface.launch()
|