Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ from urllib.parse import urlparse
|
|
12 |
import logging
|
13 |
from sklearn.preprocessing import normalize
|
14 |
from concurrent.futures import ThreadPoolExecutor
|
15 |
-
|
16 |
|
17 |
# Настройка логирования
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -38,13 +38,10 @@ logging.info(f"Загрузка модели {model_name}...")
|
|
38 |
model = SentenceTransformer(model_name)
|
39 |
logging.info("Модель загружена успешно.")
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
reranker_model = AutoModelForSequenceClassification.from_pretrained(reranker_name)
|
46 |
-
reranker_model.eval()
|
47 |
-
logging.info("Модель реранкера загружена успешно.")
|
48 |
|
49 |
# Имена таблиц
|
50 |
embeddings_table = "movie_embeddings"
|
@@ -81,6 +78,9 @@ batch_size = 32
|
|
81 |
# Количество потоков для параллельной обработки
|
82 |
num_threads = 5
|
83 |
|
|
|
|
|
|
|
84 |
def get_db_connection():
|
85 |
"""Устанавливает соединение с базой данных."""
|
86 |
try:
|
@@ -298,24 +298,84 @@ def get_movie_embeddings(conn):
|
|
298 |
logging.error(f"Ошибка при загрузке эмбеддингов фильмов: {e}")
|
299 |
return movie_embeddings
|
300 |
|
301 |
-
def
|
302 |
-
"""Переранжирует
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
305 |
movie_ids = []
|
306 |
-
for
|
307 |
movie = next((m for m in movies_data if m['id'] == movie_id), None)
|
308 |
if movie:
|
309 |
movie_info = f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genreslist']}\nОписание: {movie['description']}"
|
310 |
-
|
311 |
movie_ids.append(movie_id)
|
312 |
-
logging.info(f"Обработка фильма для реранка {i+1}/{len(results)}: {movie['name']}")
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
reranked_results = sorted(
|
319 |
logging.info("Переранжирование завершено.")
|
320 |
return reranked_results
|
321 |
|
@@ -362,7 +422,7 @@ def search_movies(query, top_k=20):
|
|
362 |
FROM {embeddings_table} m, query_embedding
|
363 |
ORDER BY similarity DESC
|
364 |
LIMIT %s
|
365 |
-
""", (query_crc32, int(top_k *
|
366 |
|
367 |
results = cur.fetchall()
|
368 |
logging.info(f"Найдено {len(results)} предварительных результатов поиска.")
|
@@ -381,7 +441,7 @@ def search_movies(query, top_k=20):
|
|
381 |
output += f"<h3>{movie['name']} ({movie['year']})</h3>\n"
|
382 |
output += f"<p><strong>Жанры:</strong> {movie['genreslist']}</p>\n"
|
383 |
output += f"<p><strong>Описание:</strong> {movie['description']}</p>\n"
|
384 |
-
output += f"<p><strong>Релевантность (reranker score):</strong> {score:.4f}</p>\n"
|
385 |
output += "<hr>\n"
|
386 |
|
387 |
search_time = time.time() - start_time
|
|
|
12 |
import logging
|
13 |
from sklearn.preprocessing import normalize
|
14 |
from concurrent.futures import ThreadPoolExecutor
|
15 |
+
import requests
|
16 |
|
17 |
# Настройка логирования
|
18 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
38 |
model = SentenceTransformer(model_name)
|
39 |
logging.info("Модель загружена успешно.")
|
40 |
|
41 |
+
# Voyage AI API Key
|
42 |
+
VOYAGE_API_KEY = os.environ.get("VOYAGE_API_KEY")
|
43 |
+
if VOYAGE_API_KEY is None:
|
44 |
+
raise ValueError("VOYAGE_API_KEY environment variable not set.")
|
|
|
|
|
|
|
45 |
|
46 |
# Имена таблиц
|
47 |
embeddings_table = "movie_embeddings"
|
|
|
78 |
# Количество потоков для параллельной обработки
|
79 |
num_threads = 5
|
80 |
|
81 |
+
# Количество потоков для параллельного реранкинга
|
82 |
+
rerank_threads = 5 # Подберите оптимальное значение
|
83 |
+
|
84 |
def get_db_connection():
|
85 |
"""Устанавливает соединение с базой данных."""
|
86 |
try:
|
|
|
298 |
logging.error(f"Ошибка при загрузке эмбеддингов фильмов: {e}")
|
299 |
return movie_embeddings
|
300 |
|
301 |
+
def rerank_batch_voyage(query, batch):
|
302 |
+
"""Переранжирует пакет результатов с помощью Voyage AI."""
|
303 |
+
url = "https://api.voyageai.com/v1/rerank"
|
304 |
+
headers = {
|
305 |
+
"Authorization": f"Bearer {VOYAGE_API_KEY}",
|
306 |
+
"content-type": "application/json"
|
307 |
+
}
|
308 |
+
|
309 |
+
documents = []
|
310 |
movie_ids = []
|
311 |
+
for movie_id, _ in batch:
|
312 |
movie = next((m for m in movies_data if m['id'] == movie_id), None)
|
313 |
if movie:
|
314 |
movie_info = f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genreslist']}\nОписание: {movie['description']}"
|
315 |
+
documents.append(movie_info)
|
316 |
movie_ids.append(movie_id)
|
|
|
317 |
|
318 |
+
payload = {
|
319 |
+
"query": query,
|
320 |
+
"documents": documents,
|
321 |
+
"model": "rerank-2", # Можно использовать rerank-2-lite для более быстрой, но менее точной модели
|
322 |
+
"return_documents": False,
|
323 |
+
"truncation": True
|
324 |
+
}
|
325 |
+
|
326 |
+
try:
|
327 |
+
response = requests.post(url, headers=headers, json=payload)
|
328 |
+
response.raise_for_status() # Проверка на ошибки HTTP
|
329 |
+
response_json = response.json()
|
330 |
+
|
331 |
+
reranked_results = []
|
332 |
+
for item in response_json['data']:
|
333 |
+
reranked_results.append((movie_ids[item['index']], item['relevance_score']))
|
334 |
+
|
335 |
+
logging.info(f"Voyage AI: Успешно переранжирован батч. Задействовано токенов: {response_json['usage']['total_tokens']}")
|
336 |
+
return reranked_results
|
337 |
+
|
338 |
+
except requests.exceptions.RequestException as e:
|
339 |
+
logging.error(f"Ошибка запроса к Voyage AI: {e}")
|
340 |
+
return []
|
341 |
+
except KeyError as e:
|
342 |
+
logging.error(f"Ошибка обработки ответа от Voyage AI: {e}. Полный ответ: {response_json}")
|
343 |
+
return []
|
344 |
+
|
345 |
+
def rerank_results(query, results):
|
346 |
+
"""Переранжирует результаты поиска с помощью Voyage AI."""
|
347 |
+
logging.info(f"Начало переранжирования для запроса: '{query}'")
|
348 |
+
reranked_results = []
|
349 |
+
|
350 |
+
with ThreadPoolExecutor(max_workers=rerank_threads) as executor:
|
351 |
+
futures = []
|
352 |
+
batch = []
|
353 |
+
batch_num = 0
|
354 |
+
for i, result in enumerate(results):
|
355 |
+
batch.append(result)
|
356 |
+
if len(batch) >= batch_size: # Отправл��ем на реранк батчами
|
357 |
+
logging.info(f"Отправка на переранжирование батча {batch_num+1} ({len(batch)} фильмов)")
|
358 |
+
future = executor.submit(rerank_batch_voyage, query, batch)
|
359 |
+
futures.append(future)
|
360 |
+
batch = []
|
361 |
+
batch_num += 1
|
362 |
+
|
363 |
+
# Обработка остатка
|
364 |
+
if batch:
|
365 |
+
logging.info(f"Отправка на переранжирование батча {batch_num+1} ({len(batch)} фильмов)")
|
366 |
+
future = executor.submit(rerank_batch_voyage, query, batch)
|
367 |
+
futures.append(future)
|
368 |
+
|
369 |
+
# Сбор результатов
|
370 |
+
for i, future in enumerate(futures):
|
371 |
+
try:
|
372 |
+
batch_result = future.result()
|
373 |
+
reranked_results.extend(batch_result)
|
374 |
+
logging.info(f"Завершен реранк батча {i+1}")
|
375 |
+
except Exception as e:
|
376 |
+
logging.error(f"Ошибка при переранжировании батча {i+1}: {e}")
|
377 |
|
378 |
+
reranked_results = sorted(reranked_results, key=lambda x: x[1], reverse=True)
|
379 |
logging.info("Переранжирование завершено.")
|
380 |
return reranked_results
|
381 |
|
|
|
422 |
FROM {embeddings_table} m, query_embedding
|
423 |
ORDER BY similarity DESC
|
424 |
LIMIT %s
|
425 |
+
""", (query_crc32, int(top_k * 1.1))) # Уменьшаем лимит до * 1.1
|
426 |
|
427 |
results = cur.fetchall()
|
428 |
logging.info(f"Найдено {len(results)} предварительных результатов поиска.")
|
|
|
441 |
output += f"<h3>{movie['name']} ({movie['year']})</h3>\n"
|
442 |
output += f"<p><strong>Жанры:</strong> {movie['genreslist']}</p>\n"
|
443 |
output += f"<p><strong>Описание:</strong> {movie['description']}</p>\n"
|
444 |
+
output += f"<p><strong>Релевантность (Voyage AI reranker score):</strong> {score:.4f}</p>\n"
|
445 |
output += "<hr>\n"
|
446 |
|
447 |
search_time = time.time() - start_time
|