File size: 9,543 Bytes
dae6371 27090a6 421602f 9a9379e a581c9d dae6371 8081474 27090a6 8081474 27090a6 8081474 496ca18 8081474 496ca18 8081474 27090a6 8081474 27090a6 8081474 9a9379e 8081474 496ca18 8081474 9a9379e 8081474 9a9379e a581c9d 8081474 a581c9d 8081474 429c3b2 8081474 429c3b2 8081474 429c3b2 8081474 652b0cf 8081474 421602f 9a9379e 421602f 8081474 9a9379e 8081474 c5d3b95 8081474 c5d3b95 8081474 c5d3b95 8081474 c5d3b95 8081474 496ca18 8081474 496ca18 8081474 421602f 8081474 429c3b2 421602f 8081474 421602f 8081474 dae6371 429c3b2 dae6371 8081474 9a9379e 421602f 20d1dcf 8081474 20d1dcf 9a9379e 8081474 9a9379e 8081474 c5d3b95 9a9379e a581c9d 652b0cf a581c9d dae6371 a581c9d 27090a6 dae6371 27090a6 dae6371 9a9379e 421602f 8081474 dae6371 8081474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import json
import os
import time
import threading
import queue
import torch
# Загружаем модель
model_name = "HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5"
model = SentenceTransformer(model_name)
# model.max_seq_length = 8192 # Убираем явное ограничение длины последовательности
# Имя файла для сохранения эмбеддингов
embeddings_file = f"movie_embeddings_{model_name.replace('/', '_')}.json"
# Имя файла для сохранения эмбеддингов запросов
query_embeddings_file = f"query_embeddings_{model_name.replace('/', '_')}.json"
# Загружаем данные из файла movies.json
try:
with open("movies.json", "r", encoding="utf-8") as f:
movies_data = json.load(f)
except FileNotFoundError:
print("Ошибка: Файл movies.json не найден.")
movies_data = []
# Загружаем эмбеддинги фильмов
if os.path.exists(embeddings_file):
with open(embeddings_file, "r", encoding="utf-8") as f:
movie_embeddings = json.load(f)
print("Загружены эмбеддинги фильмов из файла.")
else:
movie_embeddings = {}
# Загружаем эмбеддинги запросов
if os.path.exists(query_embeddings_file):
with open(query_embeddings_file, "r", encoding="utf-8") as f:
query_embeddings = json.load(f)
print("Загружены эмбеддинги запросов из файла.")
else:
query_embeddings = {}
# Очередь для необработанных фильмов
movies_queue = queue.Queue()
for movie in movies_data:
if movie["name"] not in movie_embeddings:
movies_queue.put(movie)
# Флаг, указывающий, что обработка фильмов завершена
processing_complete = False
# Флаг, указывающий, что выполняется поиск
search_in_progress = False
# Блокировка для доступа к movie_embeddings
movie_embeddings_lock = threading.Lock()
# Размер пакета для обработки эмбеддингов
batch_size = 32 # Увеличиваем размер пакета в 2 раза
# Инструкция для запроса
query_prompt = "Инструкция: Найди релевантные фильмы по запросу. \n Запрос: "
def encode_string(text, prompt=None):
"""Кодирует строку в эмбеддинг с использованием инструкции, если она задана."""
if prompt:
return model.encode(text, prompt=prompt, convert_to_tensor=True, normalize_embeddings=True)
else:
return model.encode(text, convert_to_tensor=True, normalize_embeddings=True)
def process_movies():
"""
Обрабатывает фильмы из очереди, создавая для них эмбеддинги.
"""
global processing_complete
while True:
if search_in_progress:
time.sleep(1) # Ждем, пока поиск не завершится
continue
batch = []
while not movies_queue.empty() and len(batch) < batch_size:
try:
movie = movies_queue.get(timeout=1)
batch.append(movie)
except queue.Empty:
break
if not batch:
print("Очередь фильмов пуста.")
processing_complete = True
break
titles = [movie["name"] for movie in batch]
embedding_strings = [
f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genresList']}\nОписание: {movie['description']}"
for movie in batch
]
print(f"Создаются эмбеддинги для фильмов: {', '.join(titles)}...")
embeddings = model.encode(embedding_strings, convert_to_tensor=True, batch_size=batch_size, normalize_embeddings=True).tolist()
with movie_embeddings_lock:
for title, embedding in zip(titles, embeddings):
movie_embeddings[title] = embedding
# Сохраняем эмбеддинги в файл после обработки каждого пакета
with open(embeddings_file, "w", encoding="utf-8") as f:
json.dump(movie_embeddings, f, ensure_ascii=False, indent=4)
print(f"Эмбеддинги для фильмов: {', '.join(titles)} созданы и сохранены.")
print("Обработка фильмов завершена.")
def get_query_embedding(query):
"""
Возвращает эмбеддинг для запроса с инструкцией.
Если эмбеддинг уже создан, возвращает его из словаря.
Иначе создает эмбеддинг, сохраняет его и возвращает.
"""
if query in query_embeddings:
print(f"Эмбеддинг для запроса '{query}' уже существует.")
return query_embeddings[query]
else:
print(f"Создается эмбеддинг для запроса '{query}'...")
embedding = encode_string(query, prompt=query_prompt).tolist()
query_embeddings[query] = embedding
# Сохраняем эмбеддинги запросов в файл
with open(query_embeddings_file, "w", encoding="utf-8") as f:
json.dump(query_embeddings, f, ensure_ascii=False, indent=4)
print(f"Эмбеддинг для запроса '{query}' создан и сохранен.")
return embedding
def search_movies(query, top_k=10):
"""
Ищет наиболее похожие фильмы по запросу с использованием инструкции.
Args:
query: Текстовый запрос.
top_k: Количество возвращаемых результатов.
Returns:
Строку с результатами поиска в формате HTML.
"""
global search_in_progress
search_in_progress = True
start_time = time.time()
print(f"\n\033[1mПоиск по запросу: '{query}'\033[0m")
print(f"Начало создания эмбеддинга для запроса: {time.strftime('%Y-%m-%d %H:%M:%S')}")
query_embedding_tensor = encode_string(query, prompt=query_prompt)
print(f"Окончание создания эмбеддинга для запроса: {time.strftime('%Y-%m-%d %H:%M:%S')}")
with movie_embeddings_lock:
current_movie_embeddings = movie_embeddings.copy()
if not current_movie_embeddings:
search_in_progress = False
return "<p>Пока что нет обработанных фильмов. Попробуйте позже.</p>"
# Преобразуем эмбеддинги фильмов в тензор
movie_titles = list(current_movie_embeddings.keys())
movie_embeddings_tensor = torch.tensor(list(current_movie_embeddings.values()))
print(f"Начало поиска похожих фильмов: {time.strftime('%Y-%m-%d %H:%M:%S')}")
# Используем util.semantic_search для поиска похожих фильмов
hits = util.semantic_search(query_embedding_tensor, movie_embeddings_tensor, top_k=top_k)[0]
print(f"Окончание поиска похожих фильмов: {time.strftime('%Y-%m-%d %H:%M:%S')}")
results_html = ""
for hit in hits:
title = movie_titles[hit['corpus_id']]
score = hit['score']
# Ищем полное описание фильма в исходных данных
for movie in movies_data:
if movie["name"] == title:
description = movie["description"]
year = movie["year"]
genres = movie["genresList"]
break
results_html += f"<h3><b>{title} ({year})</b></h3>"
results_html += f"<p><b>Жанры:</b> {genres}</p>"
results_html += f"<p><b>Описание:</b> {description}</p>"
results_html += f"<p><b>Сходство:</b> {score:.4f}</p>"
results_html += "<hr>"
end_time = time.time()
execution_time = end_time - start_time
print(f"Поиск завершен за {execution_time:.4f} секунд.")
search_in_progress = False
return results_html
# Поток для обработки фильмов
processing_thread = threading.Thread(target=process_movies)
# Создаем интерфейс Gradio
iface = gr.Interface(
fn=search_movies,
inputs=gr.Textbox(label="Введите запрос:"),
outputs=gr.HTML(label="Результаты поиска:"),
title="Поиск фильмов по описанию",
description="Введите запрос, и система найдет наиболее похожие фильмы по их описаниям.",
examples=[
["Фильм про ограбление"],
["Комедия 2019 года"],
["Фантастика про космос"],
],
)
# Запускаем поток для обработки фильмов
processing_thread.start()
# Запускаем приложение
iface.queue()
iface.launch() |