Upload 2 files
Browse files- controlnet_union (1).py +1085 -0
- pipeline_fill_sd_xl (1).py +559 -0
controlnet_union (1).py
ADDED
@@ -0,0 +1,1085 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from collections import OrderedDict
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
20 |
+
from diffusers.loaders import FromOriginalModelMixin
|
21 |
+
from diffusers.models.attention_processor import (
|
22 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
23 |
+
CROSS_ATTENTION_PROCESSORS,
|
24 |
+
AttentionProcessor,
|
25 |
+
AttnAddedKVProcessor,
|
26 |
+
AttnProcessor,
|
27 |
+
)
|
28 |
+
from diffusers.models.embeddings import (
|
29 |
+
TextImageProjection,
|
30 |
+
TextImageTimeEmbedding,
|
31 |
+
TextTimeEmbedding,
|
32 |
+
TimestepEmbedding,
|
33 |
+
Timesteps,
|
34 |
+
)
|
35 |
+
from diffusers.models.modeling_utils import ModelMixin
|
36 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
37 |
+
CrossAttnDownBlock2D,
|
38 |
+
DownBlock2D,
|
39 |
+
UNetMidBlock2DCrossAttn,
|
40 |
+
get_down_block,
|
41 |
+
)
|
42 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
43 |
+
from diffusers.utils import BaseOutput, logging
|
44 |
+
from torch import nn
|
45 |
+
from torch.nn import functional as F
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
48 |
+
|
49 |
+
|
50 |
+
# Transformer Block
|
51 |
+
# Used to exchange info between different conditions and input image
|
52 |
+
# With reference to https://github.com/TencentARC/T2I-Adapter/blob/SD/ldm/modules/encoders/adapter.py#L147
|
53 |
+
class QuickGELU(nn.Module):
|
54 |
+
def forward(self, x: torch.Tensor):
|
55 |
+
return x * torch.sigmoid(1.702 * x)
|
56 |
+
|
57 |
+
|
58 |
+
class LayerNorm(nn.LayerNorm):
|
59 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
60 |
+
|
61 |
+
def forward(self, x: torch.Tensor):
|
62 |
+
orig_type = x.dtype
|
63 |
+
ret = super().forward(x)
|
64 |
+
return ret.type(orig_type)
|
65 |
+
|
66 |
+
|
67 |
+
class ResidualAttentionBlock(nn.Module):
|
68 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
69 |
+
super().__init__()
|
70 |
+
|
71 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
72 |
+
self.ln_1 = LayerNorm(d_model)
|
73 |
+
self.mlp = nn.Sequential(
|
74 |
+
OrderedDict(
|
75 |
+
[
|
76 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
77 |
+
("gelu", QuickGELU()),
|
78 |
+
("c_proj", nn.Linear(d_model * 4, d_model)),
|
79 |
+
]
|
80 |
+
)
|
81 |
+
)
|
82 |
+
self.ln_2 = LayerNorm(d_model)
|
83 |
+
self.attn_mask = attn_mask
|
84 |
+
|
85 |
+
def attention(self, x: torch.Tensor):
|
86 |
+
self.attn_mask = (
|
87 |
+
self.attn_mask.to(dtype=x.dtype, device=x.device)
|
88 |
+
if self.attn_mask is not None
|
89 |
+
else None
|
90 |
+
)
|
91 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
92 |
+
|
93 |
+
def forward(self, x: torch.Tensor):
|
94 |
+
x = x + self.attention(self.ln_1(x))
|
95 |
+
x = x + self.mlp(self.ln_2(x))
|
96 |
+
return x
|
97 |
+
|
98 |
+
|
99 |
+
# -----------------------------------------------------------------------------------------------------
|
100 |
+
|
101 |
+
|
102 |
+
@dataclass
|
103 |
+
class ControlNetOutput(BaseOutput):
|
104 |
+
"""
|
105 |
+
The output of [`ControlNetModel`].
|
106 |
+
|
107 |
+
Args:
|
108 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
109 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
110 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
111 |
+
used to condition the original UNet's downsampling activations.
|
112 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
113 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
114 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
115 |
+
Output can be used to condition the original UNet's middle block activation.
|
116 |
+
"""
|
117 |
+
|
118 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
119 |
+
mid_block_res_sample: torch.Tensor
|
120 |
+
|
121 |
+
|
122 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
123 |
+
"""
|
124 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
125 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
126 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
127 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
128 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
129 |
+
model) to encode image-space conditions ... into feature maps ..."
|
130 |
+
"""
|
131 |
+
|
132 |
+
# original setting is (16, 32, 96, 256)
|
133 |
+
def __init__(
|
134 |
+
self,
|
135 |
+
conditioning_embedding_channels: int,
|
136 |
+
conditioning_channels: int = 3,
|
137 |
+
block_out_channels: Tuple[int] = (48, 96, 192, 384),
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.conv_in = nn.Conv2d(
|
142 |
+
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
143 |
+
)
|
144 |
+
|
145 |
+
self.blocks = nn.ModuleList([])
|
146 |
+
|
147 |
+
for i in range(len(block_out_channels) - 1):
|
148 |
+
channel_in = block_out_channels[i]
|
149 |
+
channel_out = block_out_channels[i + 1]
|
150 |
+
self.blocks.append(
|
151 |
+
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)
|
152 |
+
)
|
153 |
+
self.blocks.append(
|
154 |
+
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)
|
155 |
+
)
|
156 |
+
|
157 |
+
self.conv_out = zero_module(
|
158 |
+
nn.Conv2d(
|
159 |
+
block_out_channels[-1],
|
160 |
+
conditioning_embedding_channels,
|
161 |
+
kernel_size=3,
|
162 |
+
padding=1,
|
163 |
+
)
|
164 |
+
)
|
165 |
+
|
166 |
+
def forward(self, conditioning):
|
167 |
+
embedding = self.conv_in(conditioning)
|
168 |
+
embedding = F.silu(embedding)
|
169 |
+
|
170 |
+
for block in self.blocks:
|
171 |
+
embedding = block(embedding)
|
172 |
+
embedding = F.silu(embedding)
|
173 |
+
|
174 |
+
embedding = self.conv_out(embedding)
|
175 |
+
|
176 |
+
return embedding
|
177 |
+
|
178 |
+
|
179 |
+
class ControlNetModel_Union(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
180 |
+
"""
|
181 |
+
A ControlNet model.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
in_channels (`int`, defaults to 4):
|
185 |
+
The number of channels in the input sample.
|
186 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
187 |
+
Whether to flip the sin to cos in the time embedding.
|
188 |
+
freq_shift (`int`, defaults to 0):
|
189 |
+
The frequency shift to apply to the time embedding.
|
190 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
191 |
+
The tuple of downsample blocks to use.
|
192 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
193 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
194 |
+
The tuple of output channels for each block.
|
195 |
+
layers_per_block (`int`, defaults to 2):
|
196 |
+
The number of layers per block.
|
197 |
+
downsample_padding (`int`, defaults to 1):
|
198 |
+
The padding to use for the downsampling convolution.
|
199 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
200 |
+
The scale factor to use for the mid block.
|
201 |
+
act_fn (`str`, defaults to "silu"):
|
202 |
+
The activation function to use.
|
203 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
204 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
205 |
+
in post-processing.
|
206 |
+
norm_eps (`float`, defaults to 1e-5):
|
207 |
+
The epsilon to use for the normalization.
|
208 |
+
cross_attention_dim (`int`, defaults to 1280):
|
209 |
+
The dimension of the cross attention features.
|
210 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
211 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
212 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
213 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
214 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
215 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
216 |
+
dimension to `cross_attention_dim`.
|
217 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
218 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
219 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
220 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
221 |
+
The dimension of the attention heads.
|
222 |
+
use_linear_projection (`bool`, defaults to `False`):
|
223 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
224 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
225 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
226 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
227 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
228 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
229 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
230 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
231 |
+
class conditioning with `class_embed_type` equal to `None`.
|
232 |
+
upcast_attention (`bool`, defaults to `False`):
|
233 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
234 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
235 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
236 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
237 |
+
`class_embed_type="projection"`.
|
238 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
239 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
240 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
241 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
242 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
243 |
+
"""
|
244 |
+
|
245 |
+
_supports_gradient_checkpointing = True
|
246 |
+
|
247 |
+
@register_to_config
|
248 |
+
def __init__(
|
249 |
+
self,
|
250 |
+
in_channels: int = 4,
|
251 |
+
conditioning_channels: int = 3,
|
252 |
+
flip_sin_to_cos: bool = True,
|
253 |
+
freq_shift: int = 0,
|
254 |
+
down_block_types: Tuple[str] = (
|
255 |
+
"CrossAttnDownBlock2D",
|
256 |
+
"CrossAttnDownBlock2D",
|
257 |
+
"CrossAttnDownBlock2D",
|
258 |
+
"DownBlock2D",
|
259 |
+
),
|
260 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
261 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
262 |
+
layers_per_block: int = 2,
|
263 |
+
downsample_padding: int = 1,
|
264 |
+
mid_block_scale_factor: float = 1,
|
265 |
+
act_fn: str = "silu",
|
266 |
+
norm_num_groups: Optional[int] = 32,
|
267 |
+
norm_eps: float = 1e-5,
|
268 |
+
cross_attention_dim: int = 1280,
|
269 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
270 |
+
encoder_hid_dim: Optional[int] = None,
|
271 |
+
encoder_hid_dim_type: Optional[str] = None,
|
272 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
273 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
274 |
+
use_linear_projection: bool = False,
|
275 |
+
class_embed_type: Optional[str] = None,
|
276 |
+
addition_embed_type: Optional[str] = None,
|
277 |
+
addition_time_embed_dim: Optional[int] = None,
|
278 |
+
num_class_embeds: Optional[int] = None,
|
279 |
+
upcast_attention: bool = False,
|
280 |
+
resnet_time_scale_shift: str = "default",
|
281 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
282 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
283 |
+
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
284 |
+
global_pool_conditions: bool = False,
|
285 |
+
addition_embed_type_num_heads=64,
|
286 |
+
num_control_type=6,
|
287 |
+
):
|
288 |
+
super().__init__()
|
289 |
+
|
290 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
291 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
292 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
293 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
294 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
295 |
+
# which is why we correct for the naming here.
|
296 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
297 |
+
|
298 |
+
# Check inputs
|
299 |
+
if len(block_out_channels) != len(down_block_types):
|
300 |
+
raise ValueError(
|
301 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
302 |
+
)
|
303 |
+
|
304 |
+
if not isinstance(only_cross_attention, bool) and len(
|
305 |
+
only_cross_attention
|
306 |
+
) != len(down_block_types):
|
307 |
+
raise ValueError(
|
308 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
309 |
+
)
|
310 |
+
|
311 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
312 |
+
down_block_types
|
313 |
+
):
|
314 |
+
raise ValueError(
|
315 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
316 |
+
)
|
317 |
+
|
318 |
+
if isinstance(transformer_layers_per_block, int):
|
319 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
320 |
+
down_block_types
|
321 |
+
)
|
322 |
+
|
323 |
+
# input
|
324 |
+
conv_in_kernel = 3
|
325 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
326 |
+
self.conv_in = nn.Conv2d(
|
327 |
+
in_channels,
|
328 |
+
block_out_channels[0],
|
329 |
+
kernel_size=conv_in_kernel,
|
330 |
+
padding=conv_in_padding,
|
331 |
+
)
|
332 |
+
|
333 |
+
# time
|
334 |
+
time_embed_dim = block_out_channels[0] * 4
|
335 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
336 |
+
timestep_input_dim = block_out_channels[0]
|
337 |
+
self.time_embedding = TimestepEmbedding(
|
338 |
+
timestep_input_dim,
|
339 |
+
time_embed_dim,
|
340 |
+
act_fn=act_fn,
|
341 |
+
)
|
342 |
+
|
343 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
344 |
+
encoder_hid_dim_type = "text_proj"
|
345 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
346 |
+
logger.info(
|
347 |
+
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
348 |
+
)
|
349 |
+
|
350 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
351 |
+
raise ValueError(
|
352 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
353 |
+
)
|
354 |
+
|
355 |
+
if encoder_hid_dim_type == "text_proj":
|
356 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
357 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
358 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
359 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
360 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
361 |
+
self.encoder_hid_proj = TextImageProjection(
|
362 |
+
text_embed_dim=encoder_hid_dim,
|
363 |
+
image_embed_dim=cross_attention_dim,
|
364 |
+
cross_attention_dim=cross_attention_dim,
|
365 |
+
)
|
366 |
+
|
367 |
+
elif encoder_hid_dim_type is not None:
|
368 |
+
raise ValueError(
|
369 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
self.encoder_hid_proj = None
|
373 |
+
|
374 |
+
# class embedding
|
375 |
+
if class_embed_type is None and num_class_embeds is not None:
|
376 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
377 |
+
elif class_embed_type == "timestep":
|
378 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
379 |
+
elif class_embed_type == "identity":
|
380 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
381 |
+
elif class_embed_type == "projection":
|
382 |
+
if projection_class_embeddings_input_dim is None:
|
383 |
+
raise ValueError(
|
384 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
385 |
+
)
|
386 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
387 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
388 |
+
# 2. it projects from an arbitrary input dimension.
|
389 |
+
#
|
390 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
391 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
392 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
393 |
+
self.class_embedding = TimestepEmbedding(
|
394 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
395 |
+
)
|
396 |
+
else:
|
397 |
+
self.class_embedding = None
|
398 |
+
|
399 |
+
if addition_embed_type == "text":
|
400 |
+
if encoder_hid_dim is not None:
|
401 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
402 |
+
else:
|
403 |
+
text_time_embedding_from_dim = cross_attention_dim
|
404 |
+
|
405 |
+
self.add_embedding = TextTimeEmbedding(
|
406 |
+
text_time_embedding_from_dim,
|
407 |
+
time_embed_dim,
|
408 |
+
num_heads=addition_embed_type_num_heads,
|
409 |
+
)
|
410 |
+
elif addition_embed_type == "text_image":
|
411 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
412 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
413 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
414 |
+
self.add_embedding = TextImageTimeEmbedding(
|
415 |
+
text_embed_dim=cross_attention_dim,
|
416 |
+
image_embed_dim=cross_attention_dim,
|
417 |
+
time_embed_dim=time_embed_dim,
|
418 |
+
)
|
419 |
+
elif addition_embed_type == "text_time":
|
420 |
+
self.add_time_proj = Timesteps(
|
421 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
422 |
+
)
|
423 |
+
self.add_embedding = TimestepEmbedding(
|
424 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
425 |
+
)
|
426 |
+
|
427 |
+
elif addition_embed_type is not None:
|
428 |
+
raise ValueError(
|
429 |
+
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
430 |
+
)
|
431 |
+
|
432 |
+
# control net conditioning embedding
|
433 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
434 |
+
conditioning_embedding_channels=block_out_channels[0],
|
435 |
+
block_out_channels=conditioning_embedding_out_channels,
|
436 |
+
conditioning_channels=conditioning_channels,
|
437 |
+
)
|
438 |
+
|
439 |
+
# Copyright by Qi Xin(2024/07/06)
|
440 |
+
# Condition Transformer(fuse single/multi conditions with input image)
|
441 |
+
# The Condition Transformer augment the feature representation of conditions
|
442 |
+
# The overall design is somewhat like resnet. The output of Condition Transformer is used to predict a condition bias adding to the original condition feature.
|
443 |
+
# num_control_type = 6
|
444 |
+
num_trans_channel = 320
|
445 |
+
num_trans_head = 8
|
446 |
+
num_trans_layer = 1
|
447 |
+
num_proj_channel = 320
|
448 |
+
task_scale_factor = num_trans_channel**0.5
|
449 |
+
|
450 |
+
self.task_embedding = nn.Parameter(
|
451 |
+
task_scale_factor * torch.randn(num_control_type, num_trans_channel)
|
452 |
+
)
|
453 |
+
self.transformer_layes = nn.Sequential(
|
454 |
+
*[
|
455 |
+
ResidualAttentionBlock(num_trans_channel, num_trans_head)
|
456 |
+
for _ in range(num_trans_layer)
|
457 |
+
]
|
458 |
+
)
|
459 |
+
self.spatial_ch_projs = zero_module(
|
460 |
+
nn.Linear(num_trans_channel, num_proj_channel)
|
461 |
+
)
|
462 |
+
# -----------------------------------------------------------------------------------------------------
|
463 |
+
|
464 |
+
# Copyright by Qi Xin(2024/07/06)
|
465 |
+
# Control Encoder to distinguish different control conditions
|
466 |
+
# A simple but effective module, consists of an embedding layer and a linear layer, to inject the control info to time embedding.
|
467 |
+
self.control_type_proj = Timesteps(
|
468 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
469 |
+
)
|
470 |
+
self.control_add_embedding = TimestepEmbedding(
|
471 |
+
addition_time_embed_dim * num_control_type, time_embed_dim
|
472 |
+
)
|
473 |
+
# -----------------------------------------------------------------------------------------------------
|
474 |
+
|
475 |
+
self.down_blocks = nn.ModuleList([])
|
476 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
477 |
+
|
478 |
+
if isinstance(only_cross_attention, bool):
|
479 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
480 |
+
|
481 |
+
if isinstance(attention_head_dim, int):
|
482 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
483 |
+
|
484 |
+
if isinstance(num_attention_heads, int):
|
485 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
486 |
+
|
487 |
+
# down
|
488 |
+
output_channel = block_out_channels[0]
|
489 |
+
|
490 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
491 |
+
controlnet_block = zero_module(controlnet_block)
|
492 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
493 |
+
|
494 |
+
for i, down_block_type in enumerate(down_block_types):
|
495 |
+
input_channel = output_channel
|
496 |
+
output_channel = block_out_channels[i]
|
497 |
+
is_final_block = i == len(block_out_channels) - 1
|
498 |
+
|
499 |
+
down_block = get_down_block(
|
500 |
+
down_block_type,
|
501 |
+
num_layers=layers_per_block,
|
502 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
503 |
+
in_channels=input_channel,
|
504 |
+
out_channels=output_channel,
|
505 |
+
temb_channels=time_embed_dim,
|
506 |
+
add_downsample=not is_final_block,
|
507 |
+
resnet_eps=norm_eps,
|
508 |
+
resnet_act_fn=act_fn,
|
509 |
+
resnet_groups=norm_num_groups,
|
510 |
+
cross_attention_dim=cross_attention_dim,
|
511 |
+
num_attention_heads=num_attention_heads[i],
|
512 |
+
attention_head_dim=attention_head_dim[i]
|
513 |
+
if attention_head_dim[i] is not None
|
514 |
+
else output_channel,
|
515 |
+
downsample_padding=downsample_padding,
|
516 |
+
use_linear_projection=use_linear_projection,
|
517 |
+
only_cross_attention=only_cross_attention[i],
|
518 |
+
upcast_attention=upcast_attention,
|
519 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
520 |
+
)
|
521 |
+
self.down_blocks.append(down_block)
|
522 |
+
|
523 |
+
for _ in range(layers_per_block):
|
524 |
+
controlnet_block = nn.Conv2d(
|
525 |
+
output_channel, output_channel, kernel_size=1
|
526 |
+
)
|
527 |
+
controlnet_block = zero_module(controlnet_block)
|
528 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
529 |
+
|
530 |
+
if not is_final_block:
|
531 |
+
controlnet_block = nn.Conv2d(
|
532 |
+
output_channel, output_channel, kernel_size=1
|
533 |
+
)
|
534 |
+
controlnet_block = zero_module(controlnet_block)
|
535 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
536 |
+
|
537 |
+
# mid
|
538 |
+
mid_block_channel = block_out_channels[-1]
|
539 |
+
|
540 |
+
controlnet_block = nn.Conv2d(
|
541 |
+
mid_block_channel, mid_block_channel, kernel_size=1
|
542 |
+
)
|
543 |
+
controlnet_block = zero_module(controlnet_block)
|
544 |
+
self.controlnet_mid_block = controlnet_block
|
545 |
+
|
546 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
547 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
548 |
+
in_channels=mid_block_channel,
|
549 |
+
temb_channels=time_embed_dim,
|
550 |
+
resnet_eps=norm_eps,
|
551 |
+
resnet_act_fn=act_fn,
|
552 |
+
output_scale_factor=mid_block_scale_factor,
|
553 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
554 |
+
cross_attention_dim=cross_attention_dim,
|
555 |
+
num_attention_heads=num_attention_heads[-1],
|
556 |
+
resnet_groups=norm_num_groups,
|
557 |
+
use_linear_projection=use_linear_projection,
|
558 |
+
upcast_attention=upcast_attention,
|
559 |
+
)
|
560 |
+
|
561 |
+
@classmethod
|
562 |
+
def from_unet(
|
563 |
+
cls,
|
564 |
+
unet: UNet2DConditionModel,
|
565 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
566 |
+
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
567 |
+
load_weights_from_unet: bool = True,
|
568 |
+
):
|
569 |
+
r"""
|
570 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
571 |
+
|
572 |
+
Parameters:
|
573 |
+
unet (`UNet2DConditionModel`):
|
574 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
575 |
+
where applicable.
|
576 |
+
"""
|
577 |
+
transformer_layers_per_block = (
|
578 |
+
unet.config.transformer_layers_per_block
|
579 |
+
if "transformer_layers_per_block" in unet.config
|
580 |
+
else 1
|
581 |
+
)
|
582 |
+
encoder_hid_dim = (
|
583 |
+
unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
584 |
+
)
|
585 |
+
encoder_hid_dim_type = (
|
586 |
+
unet.config.encoder_hid_dim_type
|
587 |
+
if "encoder_hid_dim_type" in unet.config
|
588 |
+
else None
|
589 |
+
)
|
590 |
+
addition_embed_type = (
|
591 |
+
unet.config.addition_embed_type
|
592 |
+
if "addition_embed_type" in unet.config
|
593 |
+
else None
|
594 |
+
)
|
595 |
+
addition_time_embed_dim = (
|
596 |
+
unet.config.addition_time_embed_dim
|
597 |
+
if "addition_time_embed_dim" in unet.config
|
598 |
+
else None
|
599 |
+
)
|
600 |
+
|
601 |
+
controlnet = cls(
|
602 |
+
encoder_hid_dim=encoder_hid_dim,
|
603 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
604 |
+
addition_embed_type=addition_embed_type,
|
605 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
606 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
607 |
+
# transformer_layers_per_block=[1, 2, 5],
|
608 |
+
in_channels=unet.config.in_channels,
|
609 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
610 |
+
freq_shift=unet.config.freq_shift,
|
611 |
+
down_block_types=unet.config.down_block_types,
|
612 |
+
only_cross_attention=unet.config.only_cross_attention,
|
613 |
+
block_out_channels=unet.config.block_out_channels,
|
614 |
+
layers_per_block=unet.config.layers_per_block,
|
615 |
+
downsample_padding=unet.config.downsample_padding,
|
616 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
617 |
+
act_fn=unet.config.act_fn,
|
618 |
+
norm_num_groups=unet.config.norm_num_groups,
|
619 |
+
norm_eps=unet.config.norm_eps,
|
620 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
621 |
+
attention_head_dim=unet.config.attention_head_dim,
|
622 |
+
num_attention_heads=unet.config.num_attention_heads,
|
623 |
+
use_linear_projection=unet.config.use_linear_projection,
|
624 |
+
class_embed_type=unet.config.class_embed_type,
|
625 |
+
num_class_embeds=unet.config.num_class_embeds,
|
626 |
+
upcast_attention=unet.config.upcast_attention,
|
627 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
628 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
629 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
630 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
631 |
+
)
|
632 |
+
|
633 |
+
if load_weights_from_unet:
|
634 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
635 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
636 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
637 |
+
|
638 |
+
if controlnet.class_embedding:
|
639 |
+
controlnet.class_embedding.load_state_dict(
|
640 |
+
unet.class_embedding.state_dict()
|
641 |
+
)
|
642 |
+
|
643 |
+
controlnet.down_blocks.load_state_dict(
|
644 |
+
unet.down_blocks.state_dict(), strict=False
|
645 |
+
)
|
646 |
+
controlnet.mid_block.load_state_dict(
|
647 |
+
unet.mid_block.state_dict(), strict=False
|
648 |
+
)
|
649 |
+
|
650 |
+
return controlnet
|
651 |
+
|
652 |
+
@property
|
653 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
654 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
655 |
+
r"""
|
656 |
+
Returns:
|
657 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
658 |
+
indexed by its weight name.
|
659 |
+
"""
|
660 |
+
# set recursively
|
661 |
+
processors = {}
|
662 |
+
|
663 |
+
def fn_recursive_add_processors(
|
664 |
+
name: str,
|
665 |
+
module: torch.nn.Module,
|
666 |
+
processors: Dict[str, AttentionProcessor],
|
667 |
+
):
|
668 |
+
if hasattr(module, "get_processor"):
|
669 |
+
processors[f"{name}.processor"] = module.get_processor(
|
670 |
+
return_deprecated_lora=True
|
671 |
+
)
|
672 |
+
|
673 |
+
for sub_name, child in module.named_children():
|
674 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
675 |
+
|
676 |
+
return processors
|
677 |
+
|
678 |
+
for name, module in self.named_children():
|
679 |
+
fn_recursive_add_processors(name, module, processors)
|
680 |
+
|
681 |
+
return processors
|
682 |
+
|
683 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
684 |
+
def set_attn_processor(
|
685 |
+
self,
|
686 |
+
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
687 |
+
_remove_lora=False,
|
688 |
+
):
|
689 |
+
r"""
|
690 |
+
Sets the attention processor to use to compute attention.
|
691 |
+
|
692 |
+
Parameters:
|
693 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
694 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
695 |
+
for **all** `Attention` layers.
|
696 |
+
|
697 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
698 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
699 |
+
|
700 |
+
"""
|
701 |
+
count = len(self.attn_processors.keys())
|
702 |
+
|
703 |
+
if isinstance(processor, dict) and len(processor) != count:
|
704 |
+
raise ValueError(
|
705 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
706 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
707 |
+
)
|
708 |
+
|
709 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
710 |
+
if hasattr(module, "set_processor"):
|
711 |
+
if not isinstance(processor, dict):
|
712 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
713 |
+
else:
|
714 |
+
module.set_processor(
|
715 |
+
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
716 |
+
)
|
717 |
+
|
718 |
+
for sub_name, child in module.named_children():
|
719 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
720 |
+
|
721 |
+
for name, module in self.named_children():
|
722 |
+
fn_recursive_attn_processor(name, module, processor)
|
723 |
+
|
724 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
725 |
+
def set_default_attn_processor(self):
|
726 |
+
"""
|
727 |
+
Disables custom attention processors and sets the default attention implementation.
|
728 |
+
"""
|
729 |
+
if all(
|
730 |
+
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
731 |
+
for proc in self.attn_processors.values()
|
732 |
+
):
|
733 |
+
processor = AttnAddedKVProcessor()
|
734 |
+
elif all(
|
735 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
736 |
+
for proc in self.attn_processors.values()
|
737 |
+
):
|
738 |
+
processor = AttnProcessor()
|
739 |
+
else:
|
740 |
+
raise ValueError(
|
741 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
742 |
+
)
|
743 |
+
|
744 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
745 |
+
|
746 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
747 |
+
def set_attention_slice(self, slice_size):
|
748 |
+
r"""
|
749 |
+
Enable sliced attention computation.
|
750 |
+
|
751 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
752 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
753 |
+
|
754 |
+
Args:
|
755 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
756 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
757 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
758 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
759 |
+
must be a multiple of `slice_size`.
|
760 |
+
"""
|
761 |
+
sliceable_head_dims = []
|
762 |
+
|
763 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
764 |
+
if hasattr(module, "set_attention_slice"):
|
765 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
766 |
+
|
767 |
+
for child in module.children():
|
768 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
769 |
+
|
770 |
+
# retrieve number of attention layers
|
771 |
+
for module in self.children():
|
772 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
773 |
+
|
774 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
775 |
+
|
776 |
+
if slice_size == "auto":
|
777 |
+
# half the attention head size is usually a good trade-off between
|
778 |
+
# speed and memory
|
779 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
780 |
+
elif slice_size == "max":
|
781 |
+
# make smallest slice possible
|
782 |
+
slice_size = num_sliceable_layers * [1]
|
783 |
+
|
784 |
+
slice_size = (
|
785 |
+
num_sliceable_layers * [slice_size]
|
786 |
+
if not isinstance(slice_size, list)
|
787 |
+
else slice_size
|
788 |
+
)
|
789 |
+
|
790 |
+
if len(slice_size) != len(sliceable_head_dims):
|
791 |
+
raise ValueError(
|
792 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
793 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
794 |
+
)
|
795 |
+
|
796 |
+
for i in range(len(slice_size)):
|
797 |
+
size = slice_size[i]
|
798 |
+
dim = sliceable_head_dims[i]
|
799 |
+
if size is not None and size > dim:
|
800 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
801 |
+
|
802 |
+
# Recursively walk through all the children.
|
803 |
+
# Any children which exposes the set_attention_slice method
|
804 |
+
# gets the message
|
805 |
+
def fn_recursive_set_attention_slice(
|
806 |
+
module: torch.nn.Module, slice_size: List[int]
|
807 |
+
):
|
808 |
+
if hasattr(module, "set_attention_slice"):
|
809 |
+
module.set_attention_slice(slice_size.pop())
|
810 |
+
|
811 |
+
for child in module.children():
|
812 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
813 |
+
|
814 |
+
reversed_slice_size = list(reversed(slice_size))
|
815 |
+
for module in self.children():
|
816 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
817 |
+
|
818 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
819 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
820 |
+
module.gradient_checkpointing = value
|
821 |
+
|
822 |
+
def forward(
|
823 |
+
self,
|
824 |
+
sample: torch.FloatTensor,
|
825 |
+
timestep: Union[torch.Tensor, float, int],
|
826 |
+
encoder_hidden_states: torch.Tensor,
|
827 |
+
controlnet_cond_list: torch.FloatTensor,
|
828 |
+
conditioning_scale: float = 1.0,
|
829 |
+
class_labels: Optional[torch.Tensor] = None,
|
830 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
831 |
+
attention_mask: Optional[torch.Tensor] = None,
|
832 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
833 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
834 |
+
guess_mode: bool = False,
|
835 |
+
return_dict: bool = True,
|
836 |
+
) -> Union[ControlNetOutput, Tuple]:
|
837 |
+
"""
|
838 |
+
The [`ControlNetModel`] forward method.
|
839 |
+
|
840 |
+
Args:
|
841 |
+
sample (`torch.FloatTensor`):
|
842 |
+
The noisy input tensor.
|
843 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
844 |
+
The number of timesteps to denoise an input.
|
845 |
+
encoder_hidden_states (`torch.Tensor`):
|
846 |
+
The encoder hidden states.
|
847 |
+
controlnet_cond (`torch.FloatTensor`):
|
848 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
849 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
850 |
+
The scale factor for ControlNet outputs.
|
851 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
852 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
853 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
854 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
855 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
856 |
+
embeddings.
|
857 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
858 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
859 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
860 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
861 |
+
added_cond_kwargs (`dict`):
|
862 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
863 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
864 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
865 |
+
guess_mode (`bool`, defaults to `False`):
|
866 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
867 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
868 |
+
return_dict (`bool`, defaults to `True`):
|
869 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
870 |
+
|
871 |
+
Returns:
|
872 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
873 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
874 |
+
returned where the first element is the sample tensor.
|
875 |
+
"""
|
876 |
+
# check channel order
|
877 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
878 |
+
|
879 |
+
if channel_order == "rgb":
|
880 |
+
# in rgb order by default
|
881 |
+
...
|
882 |
+
# elif channel_order == "bgr":
|
883 |
+
# controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
884 |
+
else:
|
885 |
+
raise ValueError(
|
886 |
+
f"unknown `controlnet_conditioning_channel_order`: {channel_order}"
|
887 |
+
)
|
888 |
+
|
889 |
+
# prepare attention_mask
|
890 |
+
if attention_mask is not None:
|
891 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
892 |
+
attention_mask = attention_mask.unsqueeze(1)
|
893 |
+
|
894 |
+
# 1. time
|
895 |
+
timesteps = timestep
|
896 |
+
if not torch.is_tensor(timesteps):
|
897 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
898 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
899 |
+
is_mps = sample.device.type == "mps"
|
900 |
+
if isinstance(timestep, float):
|
901 |
+
dtype = torch.float32 if is_mps else torch.float64
|
902 |
+
else:
|
903 |
+
dtype = torch.int32 if is_mps else torch.int64
|
904 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
905 |
+
elif len(timesteps.shape) == 0:
|
906 |
+
timesteps = timesteps[None].to(sample.device)
|
907 |
+
|
908 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
909 |
+
timesteps = timesteps.expand(sample.shape[0])
|
910 |
+
|
911 |
+
t_emb = self.time_proj(timesteps)
|
912 |
+
|
913 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
914 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
915 |
+
# there might be better ways to encapsulate this.
|
916 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
917 |
+
|
918 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
919 |
+
aug_emb = None
|
920 |
+
|
921 |
+
if self.class_embedding is not None:
|
922 |
+
if class_labels is None:
|
923 |
+
raise ValueError(
|
924 |
+
"class_labels should be provided when num_class_embeds > 0"
|
925 |
+
)
|
926 |
+
|
927 |
+
if self.config.class_embed_type == "timestep":
|
928 |
+
class_labels = self.time_proj(class_labels)
|
929 |
+
|
930 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
931 |
+
emb = emb + class_emb
|
932 |
+
|
933 |
+
if self.config.addition_embed_type is not None:
|
934 |
+
if self.config.addition_embed_type == "text":
|
935 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
936 |
+
|
937 |
+
elif self.config.addition_embed_type == "text_time":
|
938 |
+
if "text_embeds" not in added_cond_kwargs:
|
939 |
+
raise ValueError(
|
940 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
941 |
+
)
|
942 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
943 |
+
if "time_ids" not in added_cond_kwargs:
|
944 |
+
raise ValueError(
|
945 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
946 |
+
)
|
947 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
948 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
949 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
950 |
+
|
951 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
952 |
+
add_embeds = add_embeds.to(emb.dtype)
|
953 |
+
aug_emb = self.add_embedding(add_embeds)
|
954 |
+
|
955 |
+
# Copyright by Qi Xin(2024/07/06)
|
956 |
+
# inject control type info to time embedding to distinguish different control conditions
|
957 |
+
control_type = added_cond_kwargs.get("control_type")
|
958 |
+
control_embeds = self.control_type_proj(control_type.flatten())
|
959 |
+
control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
|
960 |
+
control_embeds = control_embeds.to(emb.dtype)
|
961 |
+
control_emb = self.control_add_embedding(control_embeds)
|
962 |
+
emb = emb + control_emb
|
963 |
+
# ---------------------------------------------------------------------------------
|
964 |
+
|
965 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
966 |
+
|
967 |
+
# 2. pre-process
|
968 |
+
sample = self.conv_in(sample)
|
969 |
+
indices = torch.nonzero(control_type[0])
|
970 |
+
|
971 |
+
# Copyright by Qi Xin(2024/07/06)
|
972 |
+
# add single/multi conditons to input image.
|
973 |
+
# Condition Transformer provides an easy and effective way to fuse different features naturally
|
974 |
+
inputs = []
|
975 |
+
condition_list = []
|
976 |
+
|
977 |
+
for idx in range(indices.shape[0] + 1):
|
978 |
+
if idx == indices.shape[0]:
|
979 |
+
controlnet_cond = sample
|
980 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C
|
981 |
+
else:
|
982 |
+
controlnet_cond = self.controlnet_cond_embedding(
|
983 |
+
controlnet_cond_list[indices[idx][0]]
|
984 |
+
)
|
985 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C
|
986 |
+
feat_seq = feat_seq + self.task_embedding[indices[idx][0]]
|
987 |
+
|
988 |
+
inputs.append(feat_seq.unsqueeze(1))
|
989 |
+
condition_list.append(controlnet_cond)
|
990 |
+
|
991 |
+
x = torch.cat(inputs, dim=1) # NxLxC
|
992 |
+
x = self.transformer_layes(x)
|
993 |
+
|
994 |
+
controlnet_cond_fuser = sample * 0.0
|
995 |
+
for idx in range(indices.shape[0]):
|
996 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
997 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
998 |
+
controlnet_cond_fuser += condition_list[idx] + alpha
|
999 |
+
|
1000 |
+
sample = sample + controlnet_cond_fuser
|
1001 |
+
# -------------------------------------------------------------------------------------------
|
1002 |
+
|
1003 |
+
# 3. down
|
1004 |
+
down_block_res_samples = (sample,)
|
1005 |
+
for downsample_block in self.down_blocks:
|
1006 |
+
if (
|
1007 |
+
hasattr(downsample_block, "has_cross_attention")
|
1008 |
+
and downsample_block.has_cross_attention
|
1009 |
+
):
|
1010 |
+
sample, res_samples = downsample_block(
|
1011 |
+
hidden_states=sample,
|
1012 |
+
temb=emb,
|
1013 |
+
encoder_hidden_states=encoder_hidden_states,
|
1014 |
+
attention_mask=attention_mask,
|
1015 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1016 |
+
)
|
1017 |
+
else:
|
1018 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1019 |
+
|
1020 |
+
down_block_res_samples += res_samples
|
1021 |
+
|
1022 |
+
# 4. mid
|
1023 |
+
if self.mid_block is not None:
|
1024 |
+
sample = self.mid_block(
|
1025 |
+
sample,
|
1026 |
+
emb,
|
1027 |
+
encoder_hidden_states=encoder_hidden_states,
|
1028 |
+
attention_mask=attention_mask,
|
1029 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
# 5. Control net blocks
|
1033 |
+
|
1034 |
+
controlnet_down_block_res_samples = ()
|
1035 |
+
|
1036 |
+
for down_block_res_sample, controlnet_block in zip(
|
1037 |
+
down_block_res_samples, self.controlnet_down_blocks
|
1038 |
+
):
|
1039 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
1040 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (
|
1041 |
+
down_block_res_sample,
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
1045 |
+
|
1046 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
1047 |
+
|
1048 |
+
# 6. scaling
|
1049 |
+
if guess_mode and not self.config.global_pool_conditions:
|
1050 |
+
scales = torch.logspace(
|
1051 |
+
-1, 0, len(down_block_res_samples) + 1, device=sample.device
|
1052 |
+
) # 0.1 to 1.0
|
1053 |
+
scales = scales * conditioning_scale
|
1054 |
+
down_block_res_samples = [
|
1055 |
+
sample * scale for sample, scale in zip(down_block_res_samples, scales)
|
1056 |
+
]
|
1057 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
1058 |
+
else:
|
1059 |
+
down_block_res_samples = [
|
1060 |
+
sample * conditioning_scale for sample in down_block_res_samples
|
1061 |
+
]
|
1062 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
1063 |
+
|
1064 |
+
if self.config.global_pool_conditions:
|
1065 |
+
down_block_res_samples = [
|
1066 |
+
torch.mean(sample, dim=(2, 3), keepdim=True)
|
1067 |
+
for sample in down_block_res_samples
|
1068 |
+
]
|
1069 |
+
mid_block_res_sample = torch.mean(
|
1070 |
+
mid_block_res_sample, dim=(2, 3), keepdim=True
|
1071 |
+
)
|
1072 |
+
|
1073 |
+
if not return_dict:
|
1074 |
+
return (down_block_res_samples, mid_block_res_sample)
|
1075 |
+
|
1076 |
+
return ControlNetOutput(
|
1077 |
+
down_block_res_samples=down_block_res_samples,
|
1078 |
+
mid_block_res_sample=mid_block_res_sample,
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
|
1082 |
+
def zero_module(module):
|
1083 |
+
for p in module.parameters():
|
1084 |
+
nn.init.zeros_(p)
|
1085 |
+
return module
|
pipeline_fill_sd_xl (1).py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import List, Optional, Union
|
16 |
+
|
17 |
+
import cv2
|
18 |
+
import PIL.Image
|
19 |
+
import torch
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
22 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
23 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
24 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
25 |
+
from diffusers.utils.torch_utils import randn_tensor
|
26 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
27 |
+
|
28 |
+
from controlnet_union import ControlNetModel_Union
|
29 |
+
|
30 |
+
|
31 |
+
def latents_to_rgb(latents):
|
32 |
+
weights = ((60, -60, 25, -70), (60, -5, 15, -50), (60, 10, -5, -35))
|
33 |
+
|
34 |
+
weights_tensor = torch.t(
|
35 |
+
torch.tensor(weights, dtype=latents.dtype).to(latents.device)
|
36 |
+
)
|
37 |
+
biases_tensor = torch.tensor((150, 140, 130), dtype=latents.dtype).to(
|
38 |
+
latents.device
|
39 |
+
)
|
40 |
+
rgb_tensor = torch.einsum(
|
41 |
+
"...lxy,lr -> ...rxy", latents, weights_tensor
|
42 |
+
) + biases_tensor.unsqueeze(-1).unsqueeze(-1)
|
43 |
+
image_array = rgb_tensor.clamp(0, 255)[0].byte().cpu().numpy()
|
44 |
+
image_array = image_array.transpose(1, 2, 0) # Change the order of dimensions
|
45 |
+
|
46 |
+
denoised_image = cv2.fastNlMeansDenoisingColored(image_array, None, 10, 10, 7, 21)
|
47 |
+
blurred_image = cv2.GaussianBlur(denoised_image, (5, 5), 0)
|
48 |
+
final_image = PIL.Image.fromarray(blurred_image)
|
49 |
+
|
50 |
+
width, height = final_image.size
|
51 |
+
final_image = final_image.resize(
|
52 |
+
(width * 8, height * 8), PIL.Image.Resampling.LANCZOS
|
53 |
+
)
|
54 |
+
|
55 |
+
return final_image
|
56 |
+
|
57 |
+
|
58 |
+
def retrieve_timesteps(
|
59 |
+
scheduler,
|
60 |
+
num_inference_steps: Optional[int] = None,
|
61 |
+
device: Optional[Union[str, torch.device]] = None,
|
62 |
+
**kwargs,
|
63 |
+
):
|
64 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
65 |
+
timesteps = scheduler.timesteps
|
66 |
+
|
67 |
+
return timesteps, num_inference_steps
|
68 |
+
|
69 |
+
|
70 |
+
class StableDiffusionXLFillPipeline(DiffusionPipeline, StableDiffusionMixin):
|
71 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
72 |
+
_optional_components = [
|
73 |
+
"tokenizer",
|
74 |
+
"tokenizer_2",
|
75 |
+
"text_encoder",
|
76 |
+
"text_encoder_2",
|
77 |
+
]
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
vae: AutoencoderKL,
|
82 |
+
text_encoder: CLIPTextModel,
|
83 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
84 |
+
tokenizer: CLIPTokenizer,
|
85 |
+
tokenizer_2: CLIPTokenizer,
|
86 |
+
unet: UNet2DConditionModel,
|
87 |
+
controlnet: ControlNetModel_Union,
|
88 |
+
scheduler: KarrasDiffusionSchedulers,
|
89 |
+
force_zeros_for_empty_prompt: bool = True,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.register_modules(
|
94 |
+
vae=vae,
|
95 |
+
text_encoder=text_encoder,
|
96 |
+
text_encoder_2=text_encoder_2,
|
97 |
+
tokenizer=tokenizer,
|
98 |
+
tokenizer_2=tokenizer_2,
|
99 |
+
unet=unet,
|
100 |
+
controlnet=controlnet,
|
101 |
+
scheduler=scheduler,
|
102 |
+
)
|
103 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
104 |
+
self.image_processor = VaeImageProcessor(
|
105 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
106 |
+
)
|
107 |
+
self.control_image_processor = VaeImageProcessor(
|
108 |
+
vae_scale_factor=self.vae_scale_factor,
|
109 |
+
do_convert_rgb=True,
|
110 |
+
do_normalize=False,
|
111 |
+
)
|
112 |
+
|
113 |
+
self.register_to_config(
|
114 |
+
force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
|
115 |
+
)
|
116 |
+
|
117 |
+
def encode_prompt(
|
118 |
+
self,
|
119 |
+
prompt: str,
|
120 |
+
device: Optional[torch.device] = None,
|
121 |
+
do_classifier_free_guidance: bool = True,
|
122 |
+
):
|
123 |
+
device = device or self._execution_device
|
124 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
125 |
+
|
126 |
+
if prompt is not None:
|
127 |
+
batch_size = len(prompt)
|
128 |
+
|
129 |
+
# Define tokenizers and text encoders
|
130 |
+
tokenizers = (
|
131 |
+
[self.tokenizer, self.tokenizer_2]
|
132 |
+
if self.tokenizer is not None
|
133 |
+
else [self.tokenizer_2]
|
134 |
+
)
|
135 |
+
text_encoders = (
|
136 |
+
[self.text_encoder, self.text_encoder_2]
|
137 |
+
if self.text_encoder is not None
|
138 |
+
else [self.text_encoder_2]
|
139 |
+
)
|
140 |
+
|
141 |
+
prompt_2 = prompt
|
142 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
143 |
+
|
144 |
+
# textual inversion: process multi-vector tokens if necessary
|
145 |
+
prompt_embeds_list = []
|
146 |
+
prompts = [prompt, prompt_2]
|
147 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
148 |
+
text_inputs = tokenizer(
|
149 |
+
prompt,
|
150 |
+
padding="max_length",
|
151 |
+
max_length=tokenizer.model_max_length,
|
152 |
+
truncation=True,
|
153 |
+
return_tensors="pt",
|
154 |
+
)
|
155 |
+
|
156 |
+
text_input_ids = text_inputs.input_ids
|
157 |
+
|
158 |
+
prompt_embeds = text_encoder(
|
159 |
+
text_input_ids.to(device), output_hidden_states=True
|
160 |
+
)
|
161 |
+
|
162 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
163 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
164 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
165 |
+
prompt_embeds_list.append(prompt_embeds)
|
166 |
+
|
167 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
168 |
+
|
169 |
+
# get unconditional embeddings for classifier free guidance
|
170 |
+
zero_out_negative_prompt = True
|
171 |
+
negative_prompt_embeds = None
|
172 |
+
negative_pooled_prompt_embeds = None
|
173 |
+
|
174 |
+
if do_classifier_free_guidance and zero_out_negative_prompt:
|
175 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
176 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
177 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
178 |
+
negative_prompt = ""
|
179 |
+
negative_prompt_2 = negative_prompt
|
180 |
+
|
181 |
+
# normalize str to list
|
182 |
+
negative_prompt = (
|
183 |
+
batch_size * [negative_prompt]
|
184 |
+
if isinstance(negative_prompt, str)
|
185 |
+
else negative_prompt
|
186 |
+
)
|
187 |
+
negative_prompt_2 = (
|
188 |
+
batch_size * [negative_prompt_2]
|
189 |
+
if isinstance(negative_prompt_2, str)
|
190 |
+
else negative_prompt_2
|
191 |
+
)
|
192 |
+
|
193 |
+
uncond_tokens: List[str]
|
194 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
195 |
+
raise TypeError(
|
196 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
197 |
+
f" {type(prompt)}."
|
198 |
+
)
|
199 |
+
elif batch_size != len(negative_prompt):
|
200 |
+
raise ValueError(
|
201 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
202 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
203 |
+
" the batch size of `prompt`."
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
207 |
+
|
208 |
+
negative_prompt_embeds_list = []
|
209 |
+
for negative_prompt, tokenizer, text_encoder in zip(
|
210 |
+
uncond_tokens, tokenizers, text_encoders
|
211 |
+
):
|
212 |
+
max_length = prompt_embeds.shape[1]
|
213 |
+
uncond_input = tokenizer(
|
214 |
+
negative_prompt,
|
215 |
+
padding="max_length",
|
216 |
+
max_length=max_length,
|
217 |
+
truncation=True,
|
218 |
+
return_tensors="pt",
|
219 |
+
)
|
220 |
+
|
221 |
+
negative_prompt_embeds = text_encoder(
|
222 |
+
uncond_input.input_ids.to(device),
|
223 |
+
output_hidden_states=True,
|
224 |
+
)
|
225 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
226 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
227 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
228 |
+
|
229 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
230 |
+
|
231 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
232 |
+
|
233 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
234 |
+
|
235 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
236 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
237 |
+
prompt_embeds = prompt_embeds.repeat(1, 1, 1)
|
238 |
+
prompt_embeds = prompt_embeds.view(bs_embed * 1, seq_len, -1)
|
239 |
+
|
240 |
+
if do_classifier_free_guidance:
|
241 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
242 |
+
seq_len = negative_prompt_embeds.shape[1]
|
243 |
+
|
244 |
+
if self.text_encoder_2 is not None:
|
245 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
246 |
+
dtype=self.text_encoder_2.dtype, device=device
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
negative_prompt_embeds = negative_prompt_embeds.to(
|
250 |
+
dtype=self.unet.dtype, device=device
|
251 |
+
)
|
252 |
+
|
253 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1)
|
254 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
255 |
+
batch_size * 1, seq_len, -1
|
256 |
+
)
|
257 |
+
|
258 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
|
259 |
+
if do_classifier_free_guidance:
|
260 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(
|
261 |
+
1, 1
|
262 |
+
).view(bs_embed * 1, -1)
|
263 |
+
|
264 |
+
return (
|
265 |
+
prompt_embeds,
|
266 |
+
negative_prompt_embeds,
|
267 |
+
pooled_prompt_embeds,
|
268 |
+
negative_pooled_prompt_embeds,
|
269 |
+
)
|
270 |
+
|
271 |
+
def check_inputs(
|
272 |
+
self,
|
273 |
+
prompt_embeds,
|
274 |
+
negative_prompt_embeds,
|
275 |
+
pooled_prompt_embeds,
|
276 |
+
negative_pooled_prompt_embeds,
|
277 |
+
image,
|
278 |
+
controlnet_conditioning_scale=1.0,
|
279 |
+
):
|
280 |
+
if prompt_embeds is None:
|
281 |
+
raise ValueError(
|
282 |
+
"Provide `prompt_embeds`. Cannot leave `prompt_embeds` undefined."
|
283 |
+
)
|
284 |
+
|
285 |
+
if negative_prompt_embeds is None:
|
286 |
+
raise ValueError(
|
287 |
+
"Provide `negative_prompt_embeds`. Cannot leave `negative_prompt_embeds` undefined."
|
288 |
+
)
|
289 |
+
|
290 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
291 |
+
raise ValueError(
|
292 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
293 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
294 |
+
f" {negative_prompt_embeds.shape}."
|
295 |
+
)
|
296 |
+
|
297 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
298 |
+
raise ValueError(
|
299 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
300 |
+
)
|
301 |
+
|
302 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
303 |
+
raise ValueError(
|
304 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
305 |
+
)
|
306 |
+
|
307 |
+
# Check `image`
|
308 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
309 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
310 |
+
)
|
311 |
+
if (
|
312 |
+
isinstance(self.controlnet, ControlNetModel_Union)
|
313 |
+
or is_compiled
|
314 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
|
315 |
+
):
|
316 |
+
if not isinstance(image, PIL.Image.Image):
|
317 |
+
raise TypeError(
|
318 |
+
f"image must be passed and has to be a PIL image, but is {type(image)}"
|
319 |
+
)
|
320 |
+
|
321 |
+
else:
|
322 |
+
assert False
|
323 |
+
|
324 |
+
# Check `controlnet_conditioning_scale`
|
325 |
+
if (
|
326 |
+
isinstance(self.controlnet, ControlNetModel_Union)
|
327 |
+
or is_compiled
|
328 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel_Union)
|
329 |
+
):
|
330 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
331 |
+
raise TypeError(
|
332 |
+
"For single controlnet: `controlnet_conditioning_scale` must be type `float`."
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
assert False
|
336 |
+
|
337 |
+
def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
|
338 |
+
image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)
|
339 |
+
|
340 |
+
image_batch_size = image.shape[0]
|
341 |
+
|
342 |
+
image = image.repeat_interleave(image_batch_size, dim=0)
|
343 |
+
image = image.to(device=device, dtype=dtype)
|
344 |
+
|
345 |
+
if do_classifier_free_guidance:
|
346 |
+
image = torch.cat([image] * 2)
|
347 |
+
|
348 |
+
return image
|
349 |
+
|
350 |
+
def prepare_latents(
|
351 |
+
self, batch_size, num_channels_latents, height, width, dtype, device
|
352 |
+
):
|
353 |
+
shape = (
|
354 |
+
batch_size,
|
355 |
+
num_channels_latents,
|
356 |
+
int(height) // self.vae_scale_factor,
|
357 |
+
int(width) // self.vae_scale_factor,
|
358 |
+
)
|
359 |
+
|
360 |
+
latents = randn_tensor(shape, device=device, dtype=dtype)
|
361 |
+
|
362 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
363 |
+
latents = latents * self.scheduler.init_noise_sigma
|
364 |
+
return latents
|
365 |
+
|
366 |
+
@property
|
367 |
+
def guidance_scale(self):
|
368 |
+
return self._guidance_scale
|
369 |
+
|
370 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
371 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
372 |
+
# corresponds to doing no classifier free guidance.
|
373 |
+
@property
|
374 |
+
def do_classifier_free_guidance(self):
|
375 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
376 |
+
|
377 |
+
@property
|
378 |
+
def num_timesteps(self):
|
379 |
+
return self._num_timesteps
|
380 |
+
|
381 |
+
@torch.no_grad()
|
382 |
+
def __call__(
|
383 |
+
self,
|
384 |
+
prompt_embeds: torch.Tensor,
|
385 |
+
negative_prompt_embeds: torch.Tensor,
|
386 |
+
pooled_prompt_embeds: torch.Tensor,
|
387 |
+
negative_pooled_prompt_embeds: torch.Tensor,
|
388 |
+
image: PipelineImageInput = None,
|
389 |
+
num_inference_steps: int = 8,
|
390 |
+
guidance_scale: float = 1.5,
|
391 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
392 |
+
):
|
393 |
+
# 1. Check inputs. Raise error if not correct
|
394 |
+
self.check_inputs(
|
395 |
+
prompt_embeds,
|
396 |
+
negative_prompt_embeds,
|
397 |
+
pooled_prompt_embeds,
|
398 |
+
negative_pooled_prompt_embeds,
|
399 |
+
image,
|
400 |
+
controlnet_conditioning_scale,
|
401 |
+
)
|
402 |
+
|
403 |
+
self._guidance_scale = guidance_scale
|
404 |
+
|
405 |
+
# 2. Define call parameters
|
406 |
+
batch_size = 1
|
407 |
+
device = self._execution_device
|
408 |
+
|
409 |
+
# 4. Prepare image
|
410 |
+
if isinstance(self.controlnet, ControlNetModel_Union):
|
411 |
+
image = self.prepare_image(
|
412 |
+
image=image,
|
413 |
+
device=device,
|
414 |
+
dtype=self.controlnet.dtype,
|
415 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
416 |
+
)
|
417 |
+
height, width = image.shape[-2:]
|
418 |
+
else:
|
419 |
+
assert False
|
420 |
+
|
421 |
+
# 5. Prepare timesteps
|
422 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
423 |
+
self.scheduler, num_inference_steps, device
|
424 |
+
)
|
425 |
+
self._num_timesteps = len(timesteps)
|
426 |
+
|
427 |
+
# 6. Prepare latent variables
|
428 |
+
num_channels_latents = self.unet.config.in_channels
|
429 |
+
latents = self.prepare_latents(
|
430 |
+
batch_size,
|
431 |
+
num_channels_latents,
|
432 |
+
height,
|
433 |
+
width,
|
434 |
+
prompt_embeds.dtype,
|
435 |
+
device,
|
436 |
+
)
|
437 |
+
|
438 |
+
# 7 Prepare added time ids & embeddings
|
439 |
+
add_text_embeds = pooled_prompt_embeds
|
440 |
+
|
441 |
+
add_time_ids = negative_add_time_ids = torch.tensor(
|
442 |
+
image.shape[-2:] + torch.Size([0, 0]) + image.shape[-2:]
|
443 |
+
).unsqueeze(0)
|
444 |
+
|
445 |
+
if self.do_classifier_free_guidance:
|
446 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
447 |
+
add_text_embeds = torch.cat(
|
448 |
+
[negative_pooled_prompt_embeds, add_text_embeds], dim=0
|
449 |
+
)
|
450 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
451 |
+
|
452 |
+
prompt_embeds = prompt_embeds.to(device)
|
453 |
+
add_text_embeds = add_text_embeds.to(device)
|
454 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size, 1)
|
455 |
+
|
456 |
+
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
|
457 |
+
union_control_type = (
|
458 |
+
torch.Tensor([0, 0, 0, 0, 0, 0, 1, 0])
|
459 |
+
.to(device, dtype=prompt_embeds.dtype)
|
460 |
+
.repeat(batch_size * 2, 1)
|
461 |
+
)
|
462 |
+
|
463 |
+
added_cond_kwargs = {
|
464 |
+
"text_embeds": add_text_embeds,
|
465 |
+
"time_ids": add_time_ids,
|
466 |
+
"control_type": union_control_type,
|
467 |
+
}
|
468 |
+
|
469 |
+
controlnet_prompt_embeds = prompt_embeds
|
470 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
471 |
+
|
472 |
+
# 8. Denoising loop
|
473 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
474 |
+
|
475 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
476 |
+
for i, t in enumerate(timesteps):
|
477 |
+
# expand the latents if we are doing classifier free guidance
|
478 |
+
latent_model_input = (
|
479 |
+
torch.cat([latents] * 2)
|
480 |
+
if self.do_classifier_free_guidance
|
481 |
+
else latents
|
482 |
+
)
|
483 |
+
latent_model_input = self.scheduler.scale_model_input(
|
484 |
+
latent_model_input, t
|
485 |
+
)
|
486 |
+
|
487 |
+
# controlnet(s) inference
|
488 |
+
control_model_input = latent_model_input
|
489 |
+
|
490 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
491 |
+
control_model_input,
|
492 |
+
t,
|
493 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
494 |
+
controlnet_cond_list=controlnet_image_list,
|
495 |
+
conditioning_scale=controlnet_conditioning_scale,
|
496 |
+
guess_mode=False,
|
497 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
498 |
+
return_dict=False,
|
499 |
+
)
|
500 |
+
|
501 |
+
# predict the noise residual
|
502 |
+
noise_pred = self.unet(
|
503 |
+
latent_model_input,
|
504 |
+
t,
|
505 |
+
encoder_hidden_states=prompt_embeds,
|
506 |
+
timestep_cond=None,
|
507 |
+
cross_attention_kwargs={},
|
508 |
+
down_block_additional_residuals=down_block_res_samples,
|
509 |
+
mid_block_additional_residual=mid_block_res_sample,
|
510 |
+
added_cond_kwargs=added_cond_kwargs,
|
511 |
+
return_dict=False,
|
512 |
+
)[0]
|
513 |
+
|
514 |
+
# perform guidance
|
515 |
+
if self.do_classifier_free_guidance:
|
516 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
517 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
518 |
+
noise_pred_text - noise_pred_uncond
|
519 |
+
)
|
520 |
+
|
521 |
+
# compute the previous noisy sample x_t -> x_t-1
|
522 |
+
latents = self.scheduler.step(
|
523 |
+
noise_pred, t, latents, return_dict=False
|
524 |
+
)[0]
|
525 |
+
|
526 |
+
if i == 2:
|
527 |
+
prompt_embeds = prompt_embeds[-1:]
|
528 |
+
add_text_embeds = add_text_embeds[-1:]
|
529 |
+
add_time_ids = add_time_ids[-1:]
|
530 |
+
union_control_type = union_control_type[-1:]
|
531 |
+
|
532 |
+
added_cond_kwargs = {
|
533 |
+
"text_embeds": add_text_embeds,
|
534 |
+
"time_ids": add_time_ids,
|
535 |
+
"control_type": union_control_type,
|
536 |
+
}
|
537 |
+
|
538 |
+
controlnet_prompt_embeds = prompt_embeds
|
539 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
540 |
+
|
541 |
+
image = image[-1:]
|
542 |
+
controlnet_image_list = [0, 0, 0, 0, 0, 0, image, 0]
|
543 |
+
|
544 |
+
self._guidance_scale = 0.0
|
545 |
+
|
546 |
+
if i == len(timesteps) - 1 or (
|
547 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
548 |
+
):
|
549 |
+
progress_bar.update()
|
550 |
+
yield latents_to_rgb(latents)
|
551 |
+
|
552 |
+
latents = latents / self.vae.config.scaling_factor
|
553 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
554 |
+
image = self.image_processor.postprocess(image)[0]
|
555 |
+
|
556 |
+
# Offload all models
|
557 |
+
self.maybe_free_model_hooks()
|
558 |
+
|
559 |
+
yield image
|