JarrettYe's picture
udpate gradio sdk to 4.36.0
1a23b39 verified
import gradio as gr
from gradio.components import Textbox, Slider, Plot
import numpy as np
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
plt.style.use('seaborn-v0_8-whitegrid')
columns = ["difficulty", "stability", "retrievability", "delta_t",
"reps", "lapses", "last_date", "due", "ivl", "cost", "rand"]
col = {key: i for i, key in enumerate(columns)}
first_rating_prob = np.array([0.15, 0.2, 0.6, 0.05])
def simulate(w, request_retention=0.9, deck_size=10000, learn_span=100, max_cost_perday=200, max_ivl=36500, recall_cost=10, forget_cost=30, learn_cost=10):
card_table = np.zeros((len(columns), deck_size))
card_table[col["due"]] = learn_span
card_table[col["difficulty"]] = 1e-10
card_table[col["stability"]] = 1e-10
review_cnt_per_day = np.zeros(learn_span)
learn_cnt_per_day = np.zeros(learn_span)
memorized_cnt_per_day = np.zeros(learn_span)
def stability_after_success(s, r, d, response):
hard_penalty = np.where(response == 1, w[15], 1)
easy_bonus = np.where(response == 3, w[16], 1)
return s * (1 + np.exp(w[8]) * (11 - d) * np.power(s, -w[9]) * (np.exp((1 - r) * w[10]) - 1) * hard_penalty * easy_bonus)
def stability_after_failure(s, r, d):
return np.maximum(0.1, np.minimum(w[11] * np.power(d, -w[12]) * (np.power(s + 1, w[13]) - 1) * np.exp((1 - r) * w[14]), s))
for today in tqdm(range(learn_span)):
has_learned = card_table[col["stability"]] > 1e-10
card_table[col["delta_t"]][has_learned] = today - \
card_table[col["last_date"]][has_learned]
card_table[col["retrievability"]][has_learned] = np.power(
1 + card_table[col["delta_t"]][has_learned] / (9 * card_table[col["stability"]][has_learned]), -1)
card_table[col["cost"]] = 0
need_review = card_table[col["due"]] <= today
card_table[col["rand"]][need_review] = np.random.rand(
np.sum(need_review))
forget = card_table[col["rand"]] > card_table[col["retrievability"]]
card_table[col["cost"]][need_review & forget] = forget_cost
card_table[col["cost"]][need_review & ~forget] = recall_cost
true_review = need_review & (
np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
card_table[col["last_date"]][true_review] = today
card_table[col["lapses"]][true_review & forget] += 1
card_table[col["reps"]][true_review & ~forget] += 1
card_table[col["stability"]][true_review & forget] = stability_after_failure(
card_table[col["stability"]][true_review & forget], card_table[col["retrievability"]][true_review & forget], card_table[col["difficulty"]][true_review & forget])
review_ratings = np.random.choice([1, 2, 3], np.sum(true_review & ~forget), p=[0.3, 0.6, 0.1])
card_table[col["stability"]][true_review & ~forget] = stability_after_success(
card_table[col["stability"]][true_review & ~forget], card_table[col["retrievability"]][true_review & ~forget], card_table[col["difficulty"]][true_review & ~forget], review_ratings)
card_table[col["difficulty"]][true_review & forget] = np.clip(
card_table[col["difficulty"]][true_review & forget] + 2 * w[6], 1, 10)
need_learn = card_table[col["due"]] == learn_span
card_table[col["cost"]][need_learn] = learn_cost
true_learn = need_learn & (
np.cumsum(card_table[col["cost"]]) <= max_cost_perday)
card_table[col["last_date"]][true_learn] = today
first_ratings = np.random.choice(4, np.sum(true_learn), p=first_rating_prob)
card_table[col["stability"]][true_learn] = np.choose(
first_ratings, w[:4])
card_table[col["difficulty"]][true_learn] = w[4] - \
w[5] * (first_ratings - 3)
card_table[col["ivl"]][true_review | true_learn] = np.clip(np.round(
9 * card_table[col["stability"]][true_review | true_learn] * (1 / request_retention - 1), 0), 1, max_ivl)
card_table[col["due"]][true_review | true_learn] = today + \
card_table[col["ivl"]][true_review | true_learn]
review_cnt_per_day[today] = np.sum(true_review)
learn_cnt_per_day[today] = np.sum(true_learn)
memorized_cnt_per_day[today] = card_table[col["retrievability"]].sum()
return card_table, review_cnt_per_day, learn_cnt_per_day, memorized_cnt_per_day
def interface_func(weights: str, learning_time: int, learn_span: int, deck_size: int, max_ivl: int, recall_cost: int, forget_cost: int, learn_cost: int,
progress=gr.Progress(track_tqdm=True)):
plt.close('all')
np.random.seed(42)
weights = weights.replace('[', '').replace(']', '')
w = list(map(lambda x: float(x.strip()), weights.split(',')))
max_cost_perday = learning_time * 60
def moving_average(data, window_size=learn_span//20):
weights = np.ones(window_size) / window_size
return np.convolve(data, weights, mode='valid')
for request_retention in [0.95, 0.9, 0.85, 0.8, 0.75]:
(_,
review_cnt_per_day,
learn_cnt_per_day,
memorized_cnt_per_day) = simulate(w,
request_retention=request_retention,
deck_size=deck_size,
learn_span=learn_span,
max_cost_perday=max_cost_perday,
max_ivl=max_ivl,
recall_cost=recall_cost,
forget_cost=forget_cost,
learn_cost=learn_cost)
plt.figure(1)
plt.plot(moving_average(review_cnt_per_day),
label=f"R={request_retention*100:.0f}%")
plt.title("Review Count per Day")
plt.legend()
plt.figure(2)
plt.plot(moving_average(learn_cnt_per_day),
label=f"R={request_retention*100:.0f}%")
plt.title("Learn Count per Day")
plt.legend()
plt.figure(3)
plt.plot(np.cumsum(learn_cnt_per_day),
label=f"R={request_retention*100:.0f}%")
plt.title("Cumulative Learn Count")
plt.legend()
plt.figure(4)
plt.plot(memorized_cnt_per_day,
label=f"R={request_retention*100:.0f}%")
plt.title("Memorized Count per Day")
plt.legend()
return plt.figure(1), plt.figure(2), plt.figure(3), plt.figure(4)
description = f"""
# FSRS4Anki Simulator
Here is a simulator for FSRS4Anki. It can simulate the learning process of a deck with given weights and parameters.
It will help you to find the expected requestRetention for FSRS4Anki.
The simulator assumes that you spend the same amount of time on Anki every day.
"""
with gr.Blocks() as demo:
with gr.Group():
gr.Markdown(description)
with gr.Group():
with gr.Row():
with gr.Column():
weights = Textbox(label="Weights", lines=1,
value="0.4, 0.6, 2.4, 5.8, 4.93, 0.94, 0.86, 0.01, 1.49, 0.14, 0.94, 2.18, 0.05, 0.34, 1.26, 0.29, 2.61")
learning_time = Slider(label="Learning Time perday (minutes)",
minimum=5, maximum=1440, step=5, value=30)
learn_span = Slider(label="Learning Period (days)", minimum=30,
maximum=3650, step=10, value=365)
deck_size = Slider(label="Deck Size (cards)", minimum=100,
maximum=100000, step=100, value=10000)
with gr.Column():
max_ivl = Slider(label="Maximum Interval (days)", minimum=30,
maximum=36500, step=10, value=36500)
recall_cost = Slider(label="Review Cost (seconds)", minimum=1,
maximum=600, step=1, value=10)
forget_cost = Slider(label="Relearn Cost (seconds)",
minimum=1, maximum=600, step=1, value=30)
learn_cost = Slider(label="Learn Cost (seconds)", minimum=1,
maximum=600, step=1, value=10)
with gr.Row():
btn_plot = gr.Button("Simulate")
with gr.Row():
with gr.Column():
review_count = Plot(label="Review Count per Day")
learn_count = Plot(label="Learn Count per Day")
with gr.Column():
cumulative_learn_count = Plot(label="Cumulative Learn Count")
memorized_count = Plot(label="Memorized Count per Day")
btn_plot.click(
fn=interface_func,
inputs=[weights,
learning_time,
learn_span,
deck_size,
max_ivl,
recall_cost,
forget_cost,
learn_cost,
],
outputs=[review_count, learn_count,
cumulative_learn_count, memorized_count],
)
demo.queue().launch(show_error=True)