qq-hzlh's picture
add more llms
c9a97c2
import abc
import gradio as gr
import os
from gen_table import *
from meta_data import *
with gr.Blocks(title="Open Agent Leaderboard") as demo:
struct = load_results(OVERALL_MATH_SCORE_FILE)
timestamp = struct['time']
EVAL_TIME = format_timestamp(timestamp)
results = struct['results']
N_MODEL = len(results)
N_DATA = len(results['IO'])
DATASETS = list(results['IO'])
DATASETS.remove('META')
print(DATASETS)
# 确保在定义llm_options之前生成overall_table
check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
overall_table = generate_table(results, DEFAULT_MATH_BENCH)
# 保存完整的overall_table为CSV文件
csv_path_overall = os.path.join(os.getcwd(), 'src/overall_results.csv')
overall_table.to_csv(csv_path_overall, index=False)
print(f"Overall results saved to {csv_path_overall}")
# 从overall_table中提取所有可能的LLM选项
llm_options = list(set(row.LLM for row in overall_table.itertuples() if hasattr(row, 'LLM')))
gr.Markdown(LEADERBORAD_INTRODUCTION.format(EVAL_TIME))
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.Tab(label='🏅 Open Agent Overall Math Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MATH_MAIN'])
# 移动check_box和overall_table的定义到这里
# check_box = BUILD_L1_DF(results, DEFAULT_MATH_BENCH)
# overall_table = generate_table(results, DEFAULT_MATH_BENCH)
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
# 新增的CheckboxGroup组件用于选择Algorithm和LLM
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=llm_options, # 使用提取的llm_options
value=llm_options,
label='LLM',
interactive=True
)
initial_headers = ['Rank'] + check_box['essential'] + checkbox_group.value
available_headers = [h for h in initial_headers if h in overall_table.columns]
data_component = gr.components.DataFrame(
value=overall_table[available_headers],
type='pandas',
datatype=[type_map[x] for x in available_headers],
interactive=False,
wrap=True,
visible=True)
def filter_df(fields, algos, llms, *args):
headers = ['Rank'] + check_box['essential'] + fields
df = overall_table.copy()
# 添加过滤逻辑
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Ensure all requested columns exist
available_headers = [h for h in headers if h in df.columns]
original_columns = df.columns.tolist()
available_headers = sorted(available_headers, key=lambda x: original_columns.index(x))
# If no columns are available, return an empty DataFrame with basic columns
if not available_headers:
available_headers = ['Rank'] + check_box['essential']
comp = gr.components.DataFrame(
value=df[available_headers],
type='pandas',
datatype=[type_map[x] for x in available_headers],
interactive=False,
wrap=True,
visible=True)
return comp
# 更新change事件以包含新的过滤条件
checkbox_group.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df,
inputs=[checkbox_group, algo_name, llm_name],
outputs=data_component
)
with gr.Tab(label='🏅 Open Agent Detail Math Leaderboard'):
gr.Markdown(LEADERBOARD_MD['MATH_DETAIL'])
struct_detail = load_results(DETAIL_MATH_SCORE_FILE)
timestamp = struct_detail['time']
EVAL_TIME = format_timestamp(timestamp)
results_detail = struct_detail['results']
table, check_box = BUILD_L2_DF(results_detail, DEFAULT_MATH_BENCH)
# 保存完整的table为CSV文件
csv_path_detail = os.path.join(os.getcwd(), 'src/detail_results.csv')
table.to_csv(csv_path_detail, index=False)
print(f"Detail results saved to {csv_path_detail}")
type_map = check_box['type_map']
type_map['Rank'] = 'number'
checkbox_group = gr.CheckboxGroup(
choices=check_box['all'],
value=check_box['required'],
label='Evaluation Dimension',
interactive=True,
)
headers = ['Rank'] + checkbox_group.value
with gr.Row():
algo_name = gr.CheckboxGroup(
choices=ALGORITHMS,
value=ALGORITHMS,
label='Algorithm',
interactive=True
)
dataset_name = gr.CheckboxGroup(
choices=DATASETS,
value=DATASETS,
label='Datasets',
interactive=True
)
llm_name = gr.CheckboxGroup(
choices=check_box['LLM_options'],
value=check_box['LLM_options'],
label='LLM',
interactive=True
)
data_component = gr.components.DataFrame(
value=table[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
def filter_df2(fields, algos, datasets, llms):
headers = ['Rank'] + fields
df = table.copy()
# Filter data
df['flag'] = df.apply(lambda row: (
row['Algorithm'] in algos and
row['Dataset'] in datasets and
row['LLM'] in llms
), axis=1)
df = df[df['flag']].copy()
df.pop('flag')
# Group by dataset and calculate ranking within each group based on Score
if 'Score' in df.columns:
# Create a temporary ranking column
df['Rank'] = df.groupby('Dataset')['Score'].rank(method='first', ascending=False)
# Ensure ranking is integer
df['Rank'] = df['Rank'].astype(int)
original_columns = df.columns.tolist()
headers = sorted(headers, key=lambda x: original_columns.index(x))
comp = gr.components.DataFrame(
value=df[headers],
type='pandas',
datatype=[type_map[x] for x in headers],
interactive=False,
wrap=True,
visible=True)
return comp
# 为所有复选框组添加change事件
checkbox_group.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
algo_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
dataset_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
llm_name.change(
fn=filter_df2,
inputs=[checkbox_group, algo_name, dataset_name, llm_name],
outputs=data_component
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT, lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True,
)
if __name__ == '__main__':
demo.launch(server_name='0.0.0.0')