|
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
|
|
import streamlit as st
|
|
import os
|
|
from PIL import Image
|
|
import torch
|
|
import re
|
|
|
|
@st.cache_resource
|
|
def init_model():
|
|
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
|
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
|
model = model.eval()
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_qwen_model():
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
|
return model, processor
|
|
|
|
def get_quen_op(image_file, model, processor):
|
|
try:
|
|
image = Image.open(image_file).convert('RGB')
|
|
conversation = [
|
|
{
|
|
"role":"user",
|
|
"content":[
|
|
{
|
|
"type":"image",
|
|
},
|
|
{
|
|
"type":"text",
|
|
"text":"Extract text from this image."
|
|
}
|
|
]
|
|
}
|
|
]
|
|
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
|
inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
|
|
inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()}
|
|
|
|
generation_config = {
|
|
"max_new_tokens": 32,
|
|
"do_sample": False,
|
|
"top_k": 20,
|
|
"top_p": 0.90,
|
|
"temperature": 0.4,
|
|
"num_return_sequences": 1,
|
|
"pad_token_id": processor.tokenizer.pad_token_id,
|
|
"eos_token_id": processor.tokenizer.eos_token_id,
|
|
}
|
|
|
|
output_ids = model.generate(**inputs, **generation_config)
|
|
if 'input_ids' in inputs:
|
|
generated_ids = output_ids[:, inputs['input_ids'].shape[1]:]
|
|
else:
|
|
generated_ids = output_ids
|
|
|
|
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
|
|
|
return output_text[:] if output_text else "No text extracted from the image."
|
|
|
|
except Exception as e:
|
|
return f"An error occurred: {str(e)}"
|
|
|
|
@st.cache_data
|
|
def get_text(image_file, _model, _tokenizer):
|
|
res = _model.chat(_tokenizer, image_file, ocr_type='ocr')
|
|
return res
|
|
|
|
def highlight_text(text, search_term):
|
|
if not search_term:
|
|
return text
|
|
pattern = re.compile(re.escape(search_term), re.IGNORECASE)
|
|
return pattern.sub(lambda m: f'<span style="background-color: yellow;">{m.group()}</span>', text)
|
|
|
|
st.title("GOT-OCR2.0")
|
|
st.write("Upload an image")
|
|
|
|
MODEL, PROCESSOR = init_model()
|
|
|
|
image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])
|
|
|
|
if image_file:
|
|
if not os.path.exists("images"):
|
|
os.makedirs("images")
|
|
with open(f"images/{image_file.name}", "wb") as f:
|
|
f.write(image_file.getbuffer())
|
|
|
|
image_file = f"images/{image_file.name}"
|
|
|
|
text = get_text(image_file, MODEL, PROCESSOR)
|
|
|
|
print(text)
|
|
|
|
|
|
search_term = st.text_input("Enter a word or phrase to search:")
|
|
highlighted_text = highlight_text(text, search_term)
|
|
|
|
st.markdown(highlighted_text, unsafe_allow_html=True) |