kotaemon-demo / flowsettings.py
trducng's picture
initial commit
ffbe1f3
import os
from importlib.metadata import version
from inspect import currentframe, getframeinfo
from pathlib import Path
from decouple import config
from theflow.settings.default import * # noqa
cur_frame = currentframe()
if cur_frame is None:
raise ValueError("Cannot get the current frame.")
this_file = getframeinfo(cur_frame).filename
this_dir = Path(this_file).parent
# change this if your app use a different name
KH_PACKAGE_NAME = "kotaemon_app"
KH_APP_VERSION = config("KH_APP_VERSION", "local")
if not KH_APP_VERSION:
try:
# Caution: This might produce the wrong version
# https://stackoverflow.com/a/59533071
KH_APP_VERSION = version(KH_PACKAGE_NAME)
except Exception as e:
print(f"Failed to get app version: {e}")
# App can be ran from anywhere and it's not trivial to decide where to store app data.
# So let's use the same directory as the flowsetting.py file.
# KH_APP_DATA_DIR = this_dir / "ktem_app_data"
# override app data dir to fit preview data
KH_APP_DATA_DIR = Path("/home/ubuntu/lib-knowledgehub/kotaemon/ktem_app_data")
KH_APP_DATA_DIR.mkdir(parents=True, exist_ok=True)
# User data directory
KH_USER_DATA_DIR = KH_APP_DATA_DIR / "user_data"
KH_USER_DATA_DIR.mkdir(parents=True, exist_ok=True)
# markdowm output directory
KH_MARKDOWN_OUTPUT_DIR = KH_APP_DATA_DIR / "markdown_cache_dir"
KH_MARKDOWN_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# chunks output directory
KH_CHUNKS_OUTPUT_DIR = KH_APP_DATA_DIR / "chunks_cache_dir"
KH_CHUNKS_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# zip output directory
KH_ZIP_OUTPUT_DIR = KH_APP_DATA_DIR / "zip_cache_dir"
KH_ZIP_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# zip input directory
KH_ZIP_INPUT_DIR = KH_APP_DATA_DIR / "zip_cache_dir_in"
KH_ZIP_INPUT_DIR.mkdir(parents=True, exist_ok=True)
# HF models can be big, let's store them in the app data directory so that it's easier
# for users to manage their storage.
# ref: https://huggingface.co./docs/huggingface_hub/en/guides/manage-cache
os.environ["HF_HOME"] = str(KH_APP_DATA_DIR / "huggingface")
os.environ["HF_HUB_CACHE"] = str(KH_APP_DATA_DIR / "huggingface")
# doc directory
KH_DOC_DIR = this_dir / "docs"
KH_MODE = "dev"
KH_FEATURE_USER_MANAGEMENT = False
KH_USER_CAN_SEE_PUBLIC = None
KH_FEATURE_USER_MANAGEMENT_ADMIN = str(
config("KH_FEATURE_USER_MANAGEMENT_ADMIN", default="admin")
)
KH_FEATURE_USER_MANAGEMENT_PASSWORD = str(
config("KH_FEATURE_USER_MANAGEMENT_PASSWORD", default="admin")
)
KH_ENABLE_ALEMBIC = False
KH_DATABASE = f"sqlite:///file:{KH_USER_DATA_DIR / 'sql.db?mode=ro&uri=true'}"
KH_FILESTORAGE_PATH = str(KH_USER_DATA_DIR / "files")
KH_DOCSTORE = {
# "__type__": "kotaemon.storages.ElasticsearchDocumentStore",
# "__type__": "kotaemon.storages.SimpleFileDocumentStore",
"__type__": "kotaemon.storages.LanceDBDocumentStore",
"path": str(KH_USER_DATA_DIR / "docstore"),
}
KH_VECTORSTORE = {
# "__type__": "kotaemon.storages.LanceDBVectorStore",
"__type__": "kotaemon.storages.ChromaVectorStore",
"path": str(KH_USER_DATA_DIR / "vectorstore"),
}
KH_LLMS = {}
KH_EMBEDDINGS = {}
# populate options from config
if config("AZURE_OPENAI_API_KEY", default="") and config(
"AZURE_OPENAI_ENDPOINT", default=""
):
if config("AZURE_OPENAI_CHAT_DEPLOYMENT", default=""):
KH_LLMS["azure"] = {
"spec": {
"__type__": "kotaemon.llms.AzureChatOpenAI",
"temperature": 0,
"azure_endpoint": config("AZURE_OPENAI_ENDPOINT", default=""),
"api_key": config("AZURE_OPENAI_API_KEY", default=""),
"api_version": config("OPENAI_API_VERSION", default="")
or "2024-02-15-preview",
"azure_deployment": config("AZURE_OPENAI_CHAT_DEPLOYMENT", default=""),
"timeout": 20,
},
"default": False,
}
if config("AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT", default=""):
KH_EMBEDDINGS["azure"] = {
"spec": {
"__type__": "kotaemon.embeddings.AzureOpenAIEmbeddings",
"azure_endpoint": config("AZURE_OPENAI_ENDPOINT", default=""),
"api_key": config("AZURE_OPENAI_API_KEY", default=""),
"api_version": config("OPENAI_API_VERSION", default="")
or "2024-02-15-preview",
"azure_deployment": config(
"AZURE_OPENAI_EMBEDDINGS_DEPLOYMENT", default=""
),
"timeout": 10,
},
"default": False,
}
if config("OPENAI_API_KEY", default=""):
KH_LLMS["openai"] = {
"spec": {
"__type__": "kotaemon.llms.ChatOpenAI",
"temperature": 0,
"base_url": config("OPENAI_API_BASE", default="")
or "https://api.openai.com/v1",
"api_key": config("OPENAI_API_KEY", default=""),
"model": config("OPENAI_CHAT_MODEL", default="gpt-3.5-turbo"),
"timeout": 20,
},
"default": True,
}
KH_EMBEDDINGS["openai"] = {
"spec": {
"__type__": "kotaemon.embeddings.OpenAIEmbeddings",
"base_url": config("OPENAI_API_BASE", default="https://api.openai.com/v1"),
"api_key": config("OPENAI_API_KEY", default=""),
"model": config(
"OPENAI_EMBEDDINGS_MODEL", default="text-embedding-ada-002"
),
"timeout": 10,
"context_length": 8191,
},
"default": True,
}
if config("LOCAL_MODEL", default=""):
KH_LLMS["ollama"] = {
"spec": {
"__type__": "kotaemon.llms.ChatOpenAI",
"base_url": "http://localhost:11434/v1/",
"model": config("LOCAL_MODEL", default="llama3.1:8b"),
},
"default": False,
}
KH_EMBEDDINGS["ollama"] = {
"spec": {
"__type__": "kotaemon.embeddings.OpenAIEmbeddings",
"base_url": "http://localhost:11434/v1/",
"model": config("LOCAL_MODEL_EMBEDDINGS", default="nomic-embed-text"),
},
"default": False,
}
KH_EMBEDDINGS["local-bge-en"] = {
"spec": {
"__type__": "kotaemon.embeddings.FastEmbedEmbeddings",
"model_name": "BAAI/bge-base-en-v1.5",
},
"default": False,
}
KH_REASONINGS = [
"ktem.reasoning.simple.FullQAPipeline",
"ktem.reasoning.simple.FullDecomposeQAPipeline",
"ktem.reasoning.react.ReactAgentPipeline",
"ktem.reasoning.rewoo.RewooAgentPipeline",
]
KH_REASONINGS_USE_MULTIMODAL = False
KH_VLM_ENDPOINT = "{0}/openai/deployments/{1}/chat/completions?api-version={2}".format(
config("AZURE_OPENAI_ENDPOINT", default=""),
config("OPENAI_VISION_DEPLOYMENT_NAME", default="gpt-4o"),
config("OPENAI_API_VERSION", default=""),
)
SETTINGS_APP: dict[str, dict] = {}
SETTINGS_REASONING = {
"use": {
"name": "Reasoning options",
"value": None,
"choices": [],
"component": "radio",
},
"lang": {
"name": "Language",
"value": "en",
"choices": [("English", "en"), ("Japanese", "ja"), ("Vietnamese", "vi")],
"component": "dropdown",
},
"max_context_length": {
"name": "Max context length (LLM)",
"value": 32000,
"component": "number",
},
}
KH_INDEX_TYPES = [
"ktem.index.file.FileIndex",
"ktem.index.file.graph.GraphRAGIndex",
]
KH_INDICES = [
{
"name": "File",
"config": {
"supported_file_types": (
".png, .jpeg, .jpg, .tiff, .tif, .pdf, .xls, .xlsx, .doc, .docx, "
".pptx, .csv, .html, .mhtml, .txt, .zip"
),
"private": False,
},
"index_type": "ktem.index.file.FileIndex",
},
{
"name": "GraphRAG",
"config": {
"supported_file_types": (
".png, .jpeg, .jpg, .tiff, .tif, .pdf, .xls, .xlsx, .doc, .docx, "
".pptx, .csv, .html, .mhtml, .txt, .zip"
),
"private": False,
},
"index_type": "ktem.index.file.graph.GraphRAGIndex",
},
]