nirajandhakal commited on
Commit
f97b093
·
verified ·
1 Parent(s): 61529ee

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ recommendation_model.keras filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is a book recommendation system.
3
+ """
4
+
5
+ import pickle
6
+ import streamlit as st
7
+ import pandas as pd
8
+ import numpy as np
9
+ from sklearn.preprocessing import LabelEncoder
10
+ from sklearn.feature_extraction.text import TfidfVectorizer
11
+ from sklearn.metrics.pairwise import cosine_similarity
12
+ from tensorflow.keras.models import load_model
13
+
14
+ # Load datasets
15
+ books = pd.read_csv("./dataset/books.csv")
16
+ ratings = pd.read_csv("./dataset/ratings.csv")
17
+
18
+ # Preprocess data
19
+ user_encoder = LabelEncoder()
20
+ book_encoder = LabelEncoder()
21
+
22
+
23
+ ratings["user_id"] = user_encoder.fit_transform(ratings["user_id"])
24
+ ratings["book_id"] = book_encoder.fit_transform(ratings["book_id"])
25
+
26
+ # Load TF-IDF models
27
+ with open("tfidf_model_authors.pkl", "rb") as f:
28
+ tfidf_model_authors = pickle.load(f)
29
+
30
+ with open("tfidf_model_titles.pkl", "rb") as f:
31
+ tfidf_model_titles = pickle.load(f)
32
+
33
+ # Define TF-IDF vectorizer
34
+ tfidf_vectorizer = TfidfVectorizer(stop_words="english")
35
+
36
+ # Fit and transform the book descriptions
37
+ tfidf_matrix = tfidf_vectorizer.fit_transform(books["original_title"].fillna(""))
38
+
39
+ # Load collaborative filtering model
40
+ model_cf = load_model("recommendation_model.keras")
41
+
42
+
43
+ # Content-Based Recommendation
44
+ def content_based_recommendation(
45
+ query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=10
46
+ ):
47
+ """
48
+ Recommend books based on content similarity.
49
+ Args:
50
+ query (str): The name of the book or author.
51
+ books (DataFrame): DataFrame containing book information.
52
+ tfidf_model_authors: Pre-trained TF-IDF model for authors.
53
+ tfidf_model_titles: Pre-trained TF-IDF model for titles.
54
+ num_recommendations (int): The number of books to recommend.
55
+ Returns:
56
+ DataFrame: A DataFrame containing recommended books with details.
57
+ """
58
+ # Check if the query corresponds to an author or a book
59
+ if query in books["authors"].values:
60
+ book_name = books.loc[books["authors"] == query, "original_title"].values[0]
61
+ elif query in books["original_title"].values:
62
+ book_name = query
63
+ else:
64
+ print("Query not found in authors or titles.")
65
+ return None
66
+
67
+ book_author = books.loc[books["original_title"] == book_name, "authors"].values[0]
68
+ book_title = books.loc[books["title"] == book_name, "title"].values[0]
69
+
70
+ # Transform book author, title, and description into TF-IDF vectors
71
+ book_author_tfidf = tfidf_model_authors.transform([book_author])
72
+ book_title_tfidf = tfidf_model_titles.transform([book_title])
73
+
74
+ # Compute cosine similarity for authors and titles separately
75
+ similarity_scores_authors = cosine_similarity(
76
+ book_author_tfidf, tfidf_model_authors.transform(books["authors"])
77
+ )
78
+ similarity_scores_titles = cosine_similarity(
79
+ book_title_tfidf, tfidf_model_titles.transform(books["title"])
80
+ )
81
+
82
+ # Combine similarity scores for authors and titles
83
+ similarity_scores_combined = (
84
+ similarity_scores_authors + similarity_scores_titles
85
+ ) / 2
86
+
87
+ # Get indices of recommended books
88
+ recommended_indices = np.argsort(similarity_scores_combined.flatten())[
89
+ -num_recommendations:
90
+ ][::-1]
91
+
92
+ # Get recommended books
93
+ recommended_books = books.iloc[recommended_indices]
94
+
95
+ return recommended_books
96
+
97
+
98
+ # Collaborative Recommendation
99
+ def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations=10):
100
+ """
101
+ Recommend books based on collaborative filtering.
102
+ Args:
103
+ user_id (int): The user ID.
104
+ model_cf: The trained collaborative filtering model.
105
+ ratings (DataFrame): DataFrame containing user ratings.
106
+ num_recommendations (int): The number of books to recommend.
107
+ Returns:
108
+ DataFrame: A DataFrame containing recommended books with details.
109
+ """
110
+ # Check if the user ID exists in the ratings dataset
111
+ if user_id not in ratings["user_id"].unique():
112
+ print("User ID not found in ratings dataset.")
113
+ return None
114
+
115
+ # Get unrated books for the user
116
+ unrated_books = ratings[
117
+ ~ratings["book_id"].isin(ratings[ratings["user_id"] == user_id]["book_id"])
118
+ ]["book_id"].unique()
119
+
120
+ # Check if there are unrated books
121
+ if len(unrated_books) == 0:
122
+ print("No unrated books found for the user.")
123
+ return None
124
+
125
+ # Predict ratings for unrated books
126
+ predictions = model_cf.predict(
127
+ [np.full_like(unrated_books, user_id), unrated_books]
128
+ ).flatten()
129
+
130
+ # Get top indices based on predictions
131
+ top_indices = np.argsort(predictions)[-num_recommendations:][::-1]
132
+
133
+ # Get recommended books
134
+ recommended_books = books.iloc[top_indices][["original_title", "authors"]]
135
+ return recommended_books
136
+
137
+
138
+ # History-Based Recommendation
139
+ def history_based_recommendation(user_id, ratings, num_recommendations=10):
140
+ """
141
+ Recommend books based on user's historical ratings.
142
+ Args:
143
+ user_id (int): The user ID.
144
+ ratings (DataFrame): DataFrame containing user ratings.
145
+ num_recommendations (int): The number of books to recommend.
146
+ Returns:
147
+ DataFrame: A DataFrame containing recommended books with details.
148
+ """
149
+ user_ratings = ratings[ratings["user_id"] == user_id]
150
+ top_books = user_ratings.sort_values(by="rating", ascending=False).head(
151
+ num_recommendations
152
+ )["book_id"]
153
+ recommended_books = books[books["book_id"].isin(top_books)]
154
+ return recommended_books
155
+
156
+
157
+ # Hybrid Recommendation
158
+ def hybrid_recommendation(
159
+ user_id,
160
+ query,
161
+ model_cf,
162
+ books,
163
+ ratings,
164
+ tfidf_model_authors,
165
+ tfidf_model_titles,
166
+ num_recommendations=10,
167
+ ):
168
+ """
169
+ Recommend books using hybrid recommendation approach.
170
+ Args:
171
+ user_id (int): The user ID.
172
+ query (str): The name of the book or author.
173
+ model_cf: The collaborative filtering model.
174
+ books (DataFrame): DataFrame containing book information.
175
+ ratings (DataFrame): DataFrame containing user ratings.
176
+ tfidf_model_authors: Pre-trained TF-IDF model for authors.
177
+ tfidf_model_titles: Pre-trained TF-IDF model for titles.
178
+ num_recommendations (int): The number of books to recommend.
179
+ Returns:
180
+ DataFrame: A DataFrame containing recommended books with details.
181
+ """
182
+ content_based_rec = content_based_recommendation(
183
+ query,
184
+ books,
185
+ tfidf_model_authors,
186
+ tfidf_model_titles,
187
+ num_recommendations=num_recommendations,
188
+ )
189
+ collaborative_rec = collaborative_recommendation(
190
+ user_id, model_cf, ratings, num_recommendations=num_recommendations
191
+ )
192
+ history_based_rec = history_based_recommendation(
193
+ user_id, ratings, num_recommendations=num_recommendations
194
+ )
195
+
196
+ # Combine recommendations from different approaches
197
+ hybrid_rec = pd.concat(
198
+ [content_based_rec, collaborative_rec, history_based_rec]
199
+ ).drop_duplicates(subset="book_id", keep="first")
200
+ return hybrid_rec
201
+
202
+
203
+ # Top Recommendations (most popular books)
204
+ def top_recommendations(books, num_recommendations=10):
205
+ """
206
+ Recommend top books based on popularity (highest ratings count).
207
+ Args:
208
+ books (DataFrame): DataFrame containing book information.
209
+ num_recommendations (int): The number of books to recommend.
210
+ Returns:
211
+ DataFrame: A DataFrame containing recommended books with details.
212
+ """
213
+ top_books = books.sort_values(by="ratings_count", ascending=False).head(
214
+ num_recommendations
215
+ )
216
+ return top_books
217
+
218
+
219
+ # Test the recommendation functions
220
+ query = input("Enter book name or author: ")
221
+ USER_ID = 0 # Example user ID for collaborative and history-based recommendations
222
+
223
+ print("Content-Based Recommendation:")
224
+ print(
225
+ content_based_recommendation(query, books, tfidf_model_authors, tfidf_model_titles)
226
+ )
227
+
228
+ print("\nCollaborative Recommendation:")
229
+ print(collaborative_recommendation(USER_ID, model_cf, ratings))
230
+
231
+ print("\nHistory-Based Recommendation:")
232
+ print(history_based_recommendation(USER_ID, ratings))
233
+
234
+ print("\nHybrid Recommendation:")
235
+ print(
236
+ hybrid_recommendation(
237
+ user_id,
238
+ query,
239
+ model_cf,
240
+ books,
241
+ ratings,
242
+ tfidf_model_authors,
243
+ tfidf_model_titles,
244
+ )
245
+ )
246
+
247
+ print("\nTop Recommendations:")
248
+ print(top_recommendations(books))
249
+
250
+ # Streamlit App
251
+ st.title("Book Recommendation System")
252
+
253
+ # Sidebar for user input
254
+ user_input = st.text_input("Enter book name or author:", "")
255
+
256
+ # Get recommendations on button click
257
+ if st.button("Get Recommendations"):
258
+ st.write("Content-Based Recommendation:")
259
+ content_based_rec = content_based_recommendation(
260
+ user_input, books, tfidf_model_authors, tfidf_model_titles
261
+ )
262
+ st.write(content_based_rec)
263
+
264
+ st.write("Collaborative Recommendation:")
265
+ collaborative_rec = collaborative_recommendation(0, model_cf, ratings)
266
+ st.write(collaborative_rec)
267
+
268
+ st.write("Hybrid Recommendation:")
269
+ hybrid_rec = hybrid_recommendation(
270
+ 0, user_input, model_cf, books, ratings, tfidf_model_authors, tfidf_model_titles
271
+ )
272
+ st.write(hybrid_rec)
authors_w2v.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254a7bb6b32780bbc3df2575c65fad32042738af828cf11b634f5bc9066f817d
3
+ size 4978284
recommendation_model.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60e07d12b6cfde3b5ac7c9589a3fa1dc7890716c94f26fd8dd3bc8ae70d1f3dc
3
+ size 38171840
recommender.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb8b80df7fbbfe345a51a8f826b260c4ce30d33dfc386b91b7b3eaaa9750f02e
3
+ size 38177168
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ numpy
3
+ pandas
4
+ tensorflow
5
+ sklearn
6
+ keras
title_w2v.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a05d399ab55578c046a190d2d3015bcfc36fc0e7289f09c257eb17c0e78035ce
3
+ size 6747050