Spaces:
Runtime error
Runtime error
nirajandhakal
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,11 @@
|
|
1 |
-
"""
|
2 |
-
This is a book recommendation system.
|
3 |
-
"""
|
4 |
-
|
5 |
import pickle
|
6 |
-
import streamlit as st
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
9 |
from sklearn.preprocessing import LabelEncoder
|
10 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
from tensorflow.keras.models import load_model
|
|
|
13 |
|
14 |
# Load datasets
|
15 |
books = pd.read_csv("./dataset/books.csv")
|
@@ -19,7 +15,7 @@ ratings = pd.read_csv("./dataset/ratings.csv")
|
|
19 |
user_encoder = LabelEncoder()
|
20 |
book_encoder = LabelEncoder()
|
21 |
|
22 |
-
|
23 |
ratings["user_id"] = user_encoder.fit_transform(ratings["user_id"])
|
24 |
ratings["book_id"] = book_encoder.fit_transform(ratings["book_id"])
|
25 |
|
@@ -30,12 +26,6 @@ with open("tfidf_model_authors.pkl", "rb") as f:
|
|
30 |
with open("tfidf_model_titles.pkl", "rb") as f:
|
31 |
tfidf_model_titles = pickle.load(f)
|
32 |
|
33 |
-
# Define TF-IDF vectorizer
|
34 |
-
tfidf_vectorizer = TfidfVectorizer(stop_words="english")
|
35 |
-
|
36 |
-
# Fit and transform the book descriptions
|
37 |
-
tfidf_matrix = tfidf_vectorizer.fit_transform(books["original_title"].fillna(""))
|
38 |
-
|
39 |
# Load collaborative filtering model
|
40 |
model_cf = load_model("recommendation_model.keras")
|
41 |
|
@@ -44,39 +34,16 @@ model_cf = load_model("recommendation_model.keras")
|
|
44 |
def content_based_recommendation(
|
45 |
query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=10
|
46 |
):
|
47 |
-
"""
|
48 |
-
Recommend books based on content similarity.
|
49 |
-
Args:
|
50 |
-
query (str): The name of the book or author.
|
51 |
-
books (DataFrame): DataFrame containing book information.
|
52 |
-
tfidf_model_authors: Pre-trained TF-IDF model for authors.
|
53 |
-
tfidf_model_titles: Pre-trained TF-IDF model for titles.
|
54 |
-
num_recommendations (int): The number of books to recommend.
|
55 |
-
Returns:
|
56 |
-
DataFrame: A DataFrame containing recommended books with details.
|
57 |
-
"""
|
58 |
-
# Check if the query corresponds to an author or a book
|
59 |
-
if query in books["authors"].values:
|
60 |
-
book_name = books.loc[books["authors"] == query, "original_title"].values[0]
|
61 |
-
elif query in books["original_title"].values:
|
62 |
-
book_name = query
|
63 |
-
else:
|
64 |
-
print("Query not found in authors or titles.")
|
65 |
-
return None
|
66 |
-
|
67 |
-
book_author = books.loc[books["original_title"] == book_name, "authors"].values[0]
|
68 |
-
book_title = books.loc[books["title"] == book_name, "title"].values[0]
|
69 |
-
|
70 |
# Transform book author, title, and description into TF-IDF vectors
|
71 |
-
|
72 |
-
|
73 |
|
74 |
# Compute cosine similarity for authors and titles separately
|
75 |
similarity_scores_authors = cosine_similarity(
|
76 |
-
|
77 |
)
|
78 |
similarity_scores_titles = cosine_similarity(
|
79 |
-
|
80 |
)
|
81 |
|
82 |
# Combine similarity scores for authors and titles
|
@@ -97,31 +64,11 @@ def content_based_recommendation(
|
|
97 |
|
98 |
# Collaborative Recommendation
|
99 |
def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations=10):
|
100 |
-
"""
|
101 |
-
Recommend books based on collaborative filtering.
|
102 |
-
Args:
|
103 |
-
user_id (int): The user ID.
|
104 |
-
model_cf: The trained collaborative filtering model.
|
105 |
-
ratings (DataFrame): DataFrame containing user ratings.
|
106 |
-
num_recommendations (int): The number of books to recommend.
|
107 |
-
Returns:
|
108 |
-
DataFrame: A DataFrame containing recommended books with details.
|
109 |
-
"""
|
110 |
-
# Check if the user ID exists in the ratings dataset
|
111 |
-
if user_id not in ratings["user_id"].unique():
|
112 |
-
print("User ID not found in ratings dataset.")
|
113 |
-
return None
|
114 |
-
|
115 |
# Get unrated books for the user
|
116 |
unrated_books = ratings[
|
117 |
~ratings["book_id"].isin(ratings[ratings["user_id"] == user_id]["book_id"])
|
118 |
]["book_id"].unique()
|
119 |
|
120 |
-
# Check if there are unrated books
|
121 |
-
if len(unrated_books) == 0:
|
122 |
-
print("No unrated books found for the user.")
|
123 |
-
return None
|
124 |
-
|
125 |
# Predict ratings for unrated books
|
126 |
predictions = model_cf.predict(
|
127 |
[np.full_like(unrated_books, user_id), unrated_books]
|
@@ -135,25 +82,6 @@ def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations
|
|
135 |
return recommended_books
|
136 |
|
137 |
|
138 |
-
# History-Based Recommendation
|
139 |
-
def history_based_recommendation(user_id, ratings, num_recommendations=10):
|
140 |
-
"""
|
141 |
-
Recommend books based on user's historical ratings.
|
142 |
-
Args:
|
143 |
-
user_id (int): The user ID.
|
144 |
-
ratings (DataFrame): DataFrame containing user ratings.
|
145 |
-
num_recommendations (int): The number of books to recommend.
|
146 |
-
Returns:
|
147 |
-
DataFrame: A DataFrame containing recommended books with details.
|
148 |
-
"""
|
149 |
-
user_ratings = ratings[ratings["user_id"] == user_id]
|
150 |
-
top_books = user_ratings.sort_values(by="rating", ascending=False).head(
|
151 |
-
num_recommendations
|
152 |
-
)["book_id"]
|
153 |
-
recommended_books = books[books["book_id"].isin(top_books)]
|
154 |
-
return recommended_books
|
155 |
-
|
156 |
-
|
157 |
# Hybrid Recommendation
|
158 |
def hybrid_recommendation(
|
159 |
user_id,
|
@@ -165,20 +93,6 @@ def hybrid_recommendation(
|
|
165 |
tfidf_model_titles,
|
166 |
num_recommendations=10,
|
167 |
):
|
168 |
-
"""
|
169 |
-
Recommend books using hybrid recommendation approach.
|
170 |
-
Args:
|
171 |
-
user_id (int): The user ID.
|
172 |
-
query (str): The name of the book or author.
|
173 |
-
model_cf: The collaborative filtering model.
|
174 |
-
books (DataFrame): DataFrame containing book information.
|
175 |
-
ratings (DataFrame): DataFrame containing user ratings.
|
176 |
-
tfidf_model_authors: Pre-trained TF-IDF model for authors.
|
177 |
-
tfidf_model_titles: Pre-trained TF-IDF model for titles.
|
178 |
-
num_recommendations (int): The number of books to recommend.
|
179 |
-
Returns:
|
180 |
-
DataFrame: A DataFrame containing recommended books with details.
|
181 |
-
"""
|
182 |
content_based_rec = content_based_recommendation(
|
183 |
query,
|
184 |
books,
|
@@ -189,63 +103,13 @@ def hybrid_recommendation(
|
|
189 |
collaborative_rec = collaborative_recommendation(
|
190 |
user_id, model_cf, ratings, num_recommendations=num_recommendations
|
191 |
)
|
192 |
-
history_based_rec = history_based_recommendation(
|
193 |
-
user_id, ratings, num_recommendations=num_recommendations
|
194 |
-
)
|
195 |
|
196 |
# Combine recommendations from different approaches
|
197 |
-
hybrid_rec = pd.concat(
|
198 |
-
|
199 |
-
).drop_duplicates(subset="book_id", keep="first")
|
200 |
-
return hybrid_rec
|
201 |
-
|
202 |
-
|
203 |
-
# Top Recommendations (most popular books)
|
204 |
-
def top_recommendations(books, num_recommendations=10):
|
205 |
-
"""
|
206 |
-
Recommend top books based on popularity (highest ratings count).
|
207 |
-
Args:
|
208 |
-
books (DataFrame): DataFrame containing book information.
|
209 |
-
num_recommendations (int): The number of books to recommend.
|
210 |
-
Returns:
|
211 |
-
DataFrame: A DataFrame containing recommended books with details.
|
212 |
-
"""
|
213 |
-
top_books = books.sort_values(by="ratings_count", ascending=False).head(
|
214 |
-
num_recommendations
|
215 |
)
|
216 |
-
return
|
217 |
-
|
218 |
-
|
219 |
-
# Test the recommendation functions
|
220 |
-
query = input("Enter book name or author: ")
|
221 |
-
USER_ID = 0 # Example user ID for collaborative and history-based recommendations
|
222 |
-
|
223 |
-
print("Content-Based Recommendation:")
|
224 |
-
print(
|
225 |
-
content_based_recommendation(query, books, tfidf_model_authors, tfidf_model_titles)
|
226 |
-
)
|
227 |
-
|
228 |
-
print("\nCollaborative Recommendation:")
|
229 |
-
print(collaborative_recommendation(USER_ID, model_cf, ratings))
|
230 |
-
|
231 |
-
print("\nHistory-Based Recommendation:")
|
232 |
-
print(history_based_recommendation(USER_ID, ratings))
|
233 |
-
|
234 |
-
print("\nHybrid Recommendation:")
|
235 |
-
print(
|
236 |
-
hybrid_recommendation(
|
237 |
-
user_id,
|
238 |
-
query,
|
239 |
-
model_cf,
|
240 |
-
books,
|
241 |
-
ratings,
|
242 |
-
tfidf_model_authors,
|
243 |
-
tfidf_model_titles,
|
244 |
-
)
|
245 |
-
)
|
246 |
|
247 |
-
print("\nTop Recommendations:")
|
248 |
-
print(top_recommendations(books))
|
249 |
|
250 |
# Streamlit App
|
251 |
st.title("Book Recommendation System")
|
@@ -261,12 +125,21 @@ if st.button("Get Recommendations"):
|
|
261 |
)
|
262 |
st.write(content_based_rec)
|
263 |
|
|
|
|
|
|
|
264 |
st.write("Collaborative Recommendation:")
|
265 |
-
collaborative_rec = collaborative_recommendation(
|
266 |
st.write(collaborative_rec)
|
267 |
|
268 |
st.write("Hybrid Recommendation:")
|
269 |
hybrid_rec = hybrid_recommendation(
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
)
|
272 |
st.write(hybrid_rec)
|
|
|
|
|
|
|
|
|
|
|
1 |
import pickle
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from sklearn.preprocessing import LabelEncoder
|
5 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
from tensorflow.keras.models import load_model
|
8 |
+
import streamlit as st
|
9 |
|
10 |
# Load datasets
|
11 |
books = pd.read_csv("./dataset/books.csv")
|
|
|
15 |
user_encoder = LabelEncoder()
|
16 |
book_encoder = LabelEncoder()
|
17 |
|
18 |
+
ratings["user_id"] = ratings["user_id"].astype(str)
|
19 |
ratings["user_id"] = user_encoder.fit_transform(ratings["user_id"])
|
20 |
ratings["book_id"] = book_encoder.fit_transform(ratings["book_id"])
|
21 |
|
|
|
26 |
with open("tfidf_model_titles.pkl", "rb") as f:
|
27 |
tfidf_model_titles = pickle.load(f)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Load collaborative filtering model
|
30 |
model_cf = load_model("recommendation_model.keras")
|
31 |
|
|
|
34 |
def content_based_recommendation(
|
35 |
query, books, tfidf_model_authors, tfidf_model_titles, num_recommendations=10
|
36 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Transform book author, title, and description into TF-IDF vectors
|
38 |
+
query_author_tfidf = tfidf_model_authors.transform([query])
|
39 |
+
query_title_tfidf = tfidf_model_titles.transform([query])
|
40 |
|
41 |
# Compute cosine similarity for authors and titles separately
|
42 |
similarity_scores_authors = cosine_similarity(
|
43 |
+
query_author_tfidf, tfidf_model_authors.transform(books["authors"])
|
44 |
)
|
45 |
similarity_scores_titles = cosine_similarity(
|
46 |
+
query_title_tfidf, tfidf_model_titles.transform(books["original_title"])
|
47 |
)
|
48 |
|
49 |
# Combine similarity scores for authors and titles
|
|
|
64 |
|
65 |
# Collaborative Recommendation
|
66 |
def collaborative_recommendation(user_id, model_cf, ratings, num_recommendations=10):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Get unrated books for the user
|
68 |
unrated_books = ratings[
|
69 |
~ratings["book_id"].isin(ratings[ratings["user_id"] == user_id]["book_id"])
|
70 |
]["book_id"].unique()
|
71 |
|
|
|
|
|
|
|
|
|
|
|
72 |
# Predict ratings for unrated books
|
73 |
predictions = model_cf.predict(
|
74 |
[np.full_like(unrated_books, user_id), unrated_books]
|
|
|
82 |
return recommended_books
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# Hybrid Recommendation
|
86 |
def hybrid_recommendation(
|
87 |
user_id,
|
|
|
93 |
tfidf_model_titles,
|
94 |
num_recommendations=10,
|
95 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
content_based_rec = content_based_recommendation(
|
97 |
query,
|
98 |
books,
|
|
|
103 |
collaborative_rec = collaborative_recommendation(
|
104 |
user_id, model_cf, ratings, num_recommendations=num_recommendations
|
105 |
)
|
|
|
|
|
|
|
106 |
|
107 |
# Combine recommendations from different approaches
|
108 |
+
hybrid_rec = pd.concat([content_based_rec, collaborative_rec]).drop_duplicates(
|
109 |
+
subset="book_id", keep="first"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
)
|
111 |
+
return hybrid_rec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
|
|
|
|
113 |
|
114 |
# Streamlit App
|
115 |
st.title("Book Recommendation System")
|
|
|
125 |
)
|
126 |
st.write(content_based_rec)
|
127 |
|
128 |
+
# Example user ID for collaborative recommendation
|
129 |
+
USER_ID = 0
|
130 |
+
|
131 |
st.write("Collaborative Recommendation:")
|
132 |
+
collaborative_rec = collaborative_recommendation(USER_ID, model_cf, ratings)
|
133 |
st.write(collaborative_rec)
|
134 |
|
135 |
st.write("Hybrid Recommendation:")
|
136 |
hybrid_rec = hybrid_recommendation(
|
137 |
+
USER_ID,
|
138 |
+
user_input,
|
139 |
+
model_cf,
|
140 |
+
books,
|
141 |
+
ratings,
|
142 |
+
tfidf_model_authors,
|
143 |
+
tfidf_model_titles,
|
144 |
)
|
145 |
st.write(hybrid_rec)
|