|
import time |
|
import os |
|
import streamlit as st |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.memory import ConversationBufferWindowMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_together import Together |
|
|
|
from footer import footer |
|
|
|
|
|
st.set_page_config(page_title="BharatLAW", layout="centered") |
|
|
|
|
|
col1, col2, col3 = st.columns([1, 30, 1]) |
|
with col2: |
|
st.image("images/banner.png", use_column_width=True) |
|
|
|
def hide_hamburger_menu(): |
|
st.markdown(""" |
|
<style> |
|
#MainMenu {visibility: hidden;} |
|
footer {visibility: hidden;} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
hide_hamburger_menu() |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
if "memory" not in st.session_state: |
|
st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True) |
|
|
|
@st.cache_resource |
|
def load_embeddings(): |
|
"""Load and cache the embeddings model.""" |
|
return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT") |
|
|
|
embeddings = load_embeddings() |
|
db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True) |
|
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3}) |
|
|
|
prompt_template = """ |
|
<s>[INST] |
|
As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria: |
|
- Respond in a bullet-point format to clearly delineate distinct aspects of the legal query. |
|
- Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query. |
|
- Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects. |
|
- Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations. |
|
- Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified. |
|
- Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic. |
|
|
|
CONTEXT: {context} |
|
CHAT HISTORY: {chat_history} |
|
QUESTION: {question} |
|
ANSWER: |
|
- [Detail the first key aspect of the law, ensuring it reflects general application] |
|
- [Provide a concise explanation of how the law is typically interpreted or applied] |
|
- [Correct a common misconception or clarify a frequently misunderstood aspect] |
|
- [Detail any exceptions to the general rule, if applicable] |
|
- [Include any additional relevant information that directly relates to the user's query] |
|
</s>[INST] |
|
""" |
|
|
|
|
|
|
|
prompt = PromptTemplate(template=prompt_template, |
|
input_variables=['context', 'question', 'chat_history']) |
|
|
|
api_key = os.getenv('TOGETHER_API_KEY') |
|
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key) |
|
|
|
qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt}) |
|
|
|
def extract_answer(full_response): |
|
"""Extracts the answer from the LLM's full response by removing the instructional text.""" |
|
answer_start = full_response.find("Response:") |
|
if answer_start != -1: |
|
answer_start += len("Response:") |
|
answer_end = len(full_response) |
|
return full_response[answer_start:answer_end].strip() |
|
return full_response |
|
|
|
def reset_conversation(): |
|
st.session_state.messages = [] |
|
st.session_state.memory.clear() |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
input_prompt = st.chat_input("Say something...") |
|
if input_prompt: |
|
with st.chat_message("user"): |
|
st.markdown(f"**You:** {input_prompt}") |
|
|
|
st.session_state.messages.append({"role": "user", "content": input_prompt}) |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking π‘..."): |
|
result = qa.invoke(input=input_prompt) |
|
message_placeholder = st.empty() |
|
answer = extract_answer(result["answer"]) |
|
|
|
|
|
full_response = "β οΈ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n" |
|
for chunk in answer: |
|
|
|
full_response += chunk |
|
time.sleep(0.02) |
|
message_placeholder.markdown(full_response + " |", unsafe_allow_html=True) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": answer}) |
|
|
|
if st.button('ποΈ Reset All Chat', on_click=reset_conversation): |
|
st.experimental_rerun() |
|
|
|
|
|
|
|
|
|
footer() |
|
|
|
|
|
|