anilbhatt1's picture
Initial commit
722f993
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_path = "anilbhatt1/phi2-oasst-guanaco-bf16-custom"
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path)
def generate_text(prompt, response_length):
prompt = str(prompt)
max_len = int(response_length)
gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_len)
result = gen(prompt)
output_msg = result[0]['generated_text']
return output_msg
def gradio_fn(prompt, response_length):
output_txt_msg = generate_text(prompt, response_length)
return output_txt_msg
markdown_description = """
- This is a Gradio app that answers the query you ask it
- Uses **microsoft/phi-2 qlora** optimized model finetuned on **timdettmers/openassistant-guanaco** dataset
"""
demo = gr.Interface(fn=gradio_fn,
inputs=[gr.Textbox(info="How may I help you ? please enter your prompt here..."),
gr.Slider(value=50, minimum=50, maximum=200, \
info="Choose a response length min chars=50, max=200")],
outputs=gr.Textbox(),
title="phi2 - Dialog Partner",
description=markdown_description,
article=" **Credits** : https://github.com/mshumer/gpt-llm-trainer ")
demo.queue().launch(share=True)