Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
model_path = "anilbhatt1/phi2-oasst-guanaco-bf16-custom" | |
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
def generate_text(prompt, response_length): | |
prompt = str(prompt) | |
max_len = int(response_length) | |
gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_len) | |
result = gen(prompt) | |
output_msg = result[0]['generated_text'] | |
return output_msg | |
def gradio_fn(prompt, response_length): | |
output_txt_msg = generate_text(prompt, response_length) | |
return output_txt_msg | |
markdown_description = """ | |
- This is a Gradio app that answers the query you ask it | |
- Uses **microsoft/phi-2 qlora** optimized model finetuned on **timdettmers/openassistant-guanaco** dataset | |
""" | |
demo = gr.Interface(fn=gradio_fn, | |
inputs=[gr.Textbox(info="How may I help you ? please enter your prompt here..."), | |
gr.Slider(value=50, minimum=50, maximum=200, \ | |
info="Choose a response length min chars=50, max=200")], | |
outputs=gr.Textbox(), | |
title="phi2 - Dialog Partner", | |
description=markdown_description, | |
article=" **Credits** : https://github.com/mshumer/gpt-llm-trainer ") | |
demo.queue().launch(share=True) | |