"""Quantum-inspired reasoning implementations.""" import logging from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple import json from dataclasses import dataclass, field from enum import Enum from datetime import datetime import numpy as np from collections import defaultdict from .base import ReasoningStrategy, StrategyResult class QuantumOperationType(Enum): """Types of quantum operations.""" HADAMARD = "hadamard" CNOT = "cnot" PHASE = "phase" MEASURE = "measure" ENTANGLE = "entangle" @dataclass class QuantumState: """Quantum state with superposition and entanglement.""" name: str amplitude: complex phase: float entangled_states: List[str] = field(default_factory=list) timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) @dataclass class QuantumOperation: """Quantum operation applied to states.""" type: QuantumOperationType target_states: List[str] parameters: Dict[str, Any] timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) @dataclass class QuantumMeasurement: """Result of quantum measurement.""" state: str probability: float outcome: Any timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) class QuantumStrategy(ReasoningStrategy): """ Advanced quantum reasoning that: 1. Creates quantum states 2. Applies quantum operations 3. Measures outcomes 4. Handles superposition 5. Models entanglement """ def __init__(self, config: Optional[Dict[str, Any]] = None): """Initialize quantum reasoning.""" super().__init__() self.config = config or {} # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) # Configure quantum parameters self.num_qubits = self.config.get('num_qubits', 3) self.measurement_threshold = self.config.get('measurement_threshold', 0.1) self.decoherence_rate = self.config.get('decoherence_rate', 0.01) # Performance metrics self.performance_metrics = { 'states_created': 0, 'operations_applied': 0, 'measurements_made': 0, 'successful_operations': 0, 'failed_operations': 0, 'avg_state_fidelity': 0.0, 'operation_distribution': defaultdict(int), 'measurement_distribution': defaultdict(float), 'total_qubits_used': 0, 'total_entanglements': 0 } async def reason( self, query: str, context: Dict[str, Any] ) -> StrategyResult: """ Apply quantum reasoning to analyze the query. Args: query: The query to reason about context: Additional context and parameters Returns: StrategyResult containing the reasoning output and metadata """ try: # Initialize quantum states states = await self._initialize_states(query, context) self.performance_metrics['states_created'] = len(states) self.performance_metrics['total_qubits_used'] = sum( len(s.entangled_states) + 1 for s in states ) # Apply quantum operations operations = await self._apply_operations(states, context) self.performance_metrics['operations_applied'] = len(operations) # Update operation distribution for op in operations: self.performance_metrics['operation_distribution'][op.type.value] += 1 # Perform measurements measurements = await self._measure_states(states, context) self.performance_metrics['measurements_made'] = len(measurements) # Update measurement distribution for m in measurements: self.performance_metrics['measurement_distribution'][m.state] = m.probability # Analyze results result = await self._analyze_results(measurements, context) # Build reasoning trace reasoning_trace = self._build_reasoning_trace( states, operations, measurements, result ) # Calculate confidence confidence = self._calculate_confidence(measurements) if confidence >= self.min_confidence: return StrategyResult( strategy_type="quantum", success=True, answer=result.get('conclusion'), confidence=confidence, reasoning_trace=reasoning_trace, metadata={ 'num_states': len(states), 'num_operations': len(operations), 'num_measurements': len(measurements), 'quantum_parameters': { 'num_qubits': self.num_qubits, 'decoherence_rate': self.decoherence_rate } }, performance_metrics=self.performance_metrics ) return StrategyResult( strategy_type="quantum", success=False, answer=None, confidence=confidence, reasoning_trace=reasoning_trace, metadata={'error': 'Insufficient confidence in results'}, performance_metrics=self.performance_metrics ) except Exception as e: logging.error(f"Quantum reasoning error: {str(e)}") return StrategyResult( strategy_type="quantum", success=False, answer=None, confidence=0.0, reasoning_trace=[{ 'step': 'error', 'error': str(e), 'timestamp': datetime.now().isoformat() }], metadata={'error': str(e)}, performance_metrics=self.performance_metrics ) async def _initialize_states( self, query: str, context: Dict[str, Any] ) -> List[QuantumState]: """Initialize quantum states from query.""" states = [] # Create initial state initial_state = QuantumState( name="initial", amplitude=complex(1.0, 0.0), phase=0.0 ) states.append(initial_state) # Create superposition states for i in range(self.num_qubits - 1): state = QuantumState( name=f"superposition_{i}", amplitude=complex(1.0 / np.sqrt(2), 0.0), phase=np.pi / 2, entangled_states=[initial_state.name] ) states.append(state) self.performance_metrics['total_entanglements'] += 1 return states async def _apply_operations( self, states: List[QuantumState], context: Dict[str, Any] ) -> List[QuantumOperation]: """Apply quantum operations to states.""" operations = [] for state in states: # Apply Hadamard gate operations.append(QuantumOperation( type=QuantumOperationType.HADAMARD, target_states=[state.name], parameters={'angle': np.pi / 2} )) # Apply CNOT if entangled if state.entangled_states: operations.append(QuantumOperation( type=QuantumOperationType.CNOT, target_states=[state.name] + state.entangled_states, parameters={} )) # Apply phase rotation operations.append(QuantumOperation( type=QuantumOperationType.PHASE, target_states=[state.name], parameters={'phase': state.phase} )) # Track success/failure success = np.random.random() > self.decoherence_rate if success: self.performance_metrics['successful_operations'] += 1 else: self.performance_metrics['failed_operations'] += 1 return operations async def _measure_states( self, states: List[QuantumState], context: Dict[str, Any] ) -> List[QuantumMeasurement]: """Measure quantum states.""" measurements = [] for state in states: # Calculate measurement probability probability = abs(state.amplitude) ** 2 # Apply measurement threshold if probability > self.measurement_threshold: measurements.append(QuantumMeasurement( state=state.name, probability=probability, outcome=1 if probability > 0.5 else 0 )) return measurements async def _analyze_results( self, measurements: List[QuantumMeasurement], context: Dict[str, Any] ) -> Dict[str, Any]: """Analyze measurement results.""" if not measurements: return {'conclusion': None, 'confidence': 0.0} # Calculate weighted outcome total_probability = sum(m.probability for m in measurements) weighted_outcome = sum( m.probability * m.outcome for m in measurements ) / total_probability if total_probability > 0 else 0 return { 'conclusion': f"Quantum analysis suggests outcome: {weighted_outcome:.2f}", 'confidence': total_probability / len(measurements) } def _calculate_confidence( self, measurements: List[QuantumMeasurement] ) -> float: """Calculate overall confidence score.""" if not measurements: return 0.0 # Base confidence from measurements confidence = sum(m.probability for m in measurements) / len(measurements) # Adjust for decoherence confidence *= (1 - self.decoherence_rate) # Adjust for operation success rate total_ops = ( self.performance_metrics['successful_operations'] + self.performance_metrics['failed_operations'] ) if total_ops > 0: success_rate = ( self.performance_metrics['successful_operations'] / total_ops ) confidence *= success_rate return min(confidence, 1.0) def _build_reasoning_trace( self, states: List[QuantumState], operations: List[QuantumOperation], measurements: List[QuantumMeasurement], result: Dict[str, Any] ) -> List[Dict[str, Any]]: """Build the reasoning trace for quantum processing.""" trace = [] # State initialization step trace.append({ 'step': 'state_initialization', 'states': [ { 'name': s.name, 'amplitude': abs(s.amplitude), 'phase': s.phase, 'entangled': len(s.entangled_states) } for s in states ], 'timestamp': datetime.now().isoformat() }) # Operation application step trace.append({ 'step': 'operation_application', 'operations': [ { 'type': o.type.value, 'targets': o.target_states, 'parameters': o.parameters } for o in operations ], 'timestamp': datetime.now().isoformat() }) # Measurement step trace.append({ 'step': 'measurement', 'measurements': [ { 'state': m.state, 'probability': m.probability, 'outcome': m.outcome } for m in measurements ], 'timestamp': datetime.now().isoformat() }) # Result analysis step trace.append({ 'step': 'result_analysis', 'result': result, 'timestamp': datetime.now().isoformat() }) return trace class QuantumInspiredStrategy(ReasoningStrategy): """Implements Quantum-Inspired reasoning.""" async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Create a clean context for serialization clean_context = {k: v for k, v in context.items() if k != "groq_api"} prompt = f""" You are a meta-learning reasoning system that adapts its approach based on problem characteristics. Problem Type: Query: {query} Context: {json.dumps(clean_context)} Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: PROBLEM ANALYSIS: - [First key aspect or complexity factor] - [Second key aspect or complexity factor] - [Third key aspect or complexity factor] SOLUTION PATHS: - Path 1: [Specific solution approach] - Path 2: [Alternative solution approach] - Path 3: [Another alternative approach] META INSIGHTS: - Learning 1: [Key insight about the problem space] - Learning 2: [Key insight about solution approaches] - Learning 3: [Key insight about trade-offs] CONCLUSION: [Final synthesized solution incorporating meta-learnings] """ response = await context["groq_api"].predict(prompt) if not response["success"]: return response # Parse response into components lines = response["answer"].split("\n") problem_analysis = [] solution_paths = [] meta_insights = [] conclusion = "" section = None for line in lines: line = line.strip() if not line: continue if "PROBLEM ANALYSIS:" in line: section = "analysis" elif "SOLUTION PATHS:" in line: section = "paths" elif "META INSIGHTS:" in line: section = "insights" elif "CONCLUSION:" in line: section = "conclusion" elif line.startswith("-"): content = line.lstrip("- ").strip() if section == "analysis": problem_analysis.append(content) elif section == "paths": solution_paths.append(content) elif section == "insights": meta_insights.append(content) elif section == "conclusion": conclusion += line + " " return { "success": True, "problem_analysis": problem_analysis, "solution_paths": solution_paths, "meta_insights": meta_insights, "conclusion": conclusion.strip(), # Add standard fields for compatibility "reasoning_path": problem_analysis + solution_paths + meta_insights, "conclusion": conclusion.strip() } except Exception as e: return {"success": False, "error": str(e)}