""" Meta-Learning System ------------------ Implements meta-learning capabilities for improved learning and adaptation. """ from typing import Dict, Any, List, Optional, Tuple import numpy as np from dataclasses import dataclass, field import logging from datetime import datetime from enum import Enum import json from quantum_learning import QuantumLearningSystem, Pattern, PatternType class LearningStrategy(Enum): GRADIENT_BASED = "gradient_based" MEMORY_BASED = "memory_based" EVOLUTIONARY = "evolutionary" REINFORCEMENT = "reinforcement" QUANTUM = "quantum" @dataclass class MetaParameters: """Meta-parameters for learning strategies""" learning_rate: float = 0.01 memory_size: int = 1000 evolution_rate: float = 0.1 exploration_rate: float = 0.2 quantum_interference: float = 0.5 adaptation_threshold: float = 0.7 @dataclass class LearningMetrics: """Metrics for learning performance""" accuracy: float convergence_rate: float adaptation_speed: float resource_usage: float timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) class MetaLearningSystem: """Meta-learning system for optimizing learning strategies""" def __init__(self, config: Optional[Dict[str, Any]] = None): self.logger = logging.getLogger(__name__) self.config = config or {} # Standard reasoning parameters self.min_confidence = self.config.get('min_confidence', 0.7) self.parallel_threshold = self.config.get('parallel_threshold', 3) self.learning_rate = self.config.get('learning_rate', 0.1) self.strategy_weights = self.config.get('strategy_weights', { "LOCAL_LLM": 0.8, "CHAIN_OF_THOUGHT": 0.6, "TREE_OF_THOUGHTS": 0.5, "META_LEARNING": 0.4 }) # Initialize quantum system with shared config quantum_config = { 'min_confidence': self.min_confidence, 'parallel_threshold': self.parallel_threshold, 'learning_rate': self.learning_rate, 'strategy_weights': self.strategy_weights, 'num_qubits': self.config.get('num_qubits', 8), 'entanglement_strength': self.config.get('entanglement_strength', 0.5), 'interference_threshold': self.config.get('interference_threshold', 0.3), 'tunneling_rate': self.config.get('tunneling_rate', 0.1), 'annealing_schedule': self.config.get('annealing_schedule', { 'initial_temp': 1.0, 'final_temp': 0.01, 'steps': 100, 'cooling_rate': 0.95 }) } self.quantum_system = QuantumLearningSystem(quantum_config) self.strategies = {} self.performance_history = [] self.meta_parameters = MetaParameters() async def optimize_learning( self, observation: Dict[str, Any], current_strategy: LearningStrategy ) -> Tuple[Dict[str, Any], LearningMetrics]: """Optimize learning strategy based on observation""" try: # Process with quantum system quantum_result = await self.quantum_system.process_observation(observation) # Evaluate current strategy current_metrics = self._evaluate_strategy( current_strategy, observation, quantum_result ) # Update performance history self._update_performance_history(current_metrics) # Adapt meta-parameters self._adapt_meta_parameters(current_metrics) # Select optimal strategy optimal_strategy = self._select_optimal_strategy( observation, current_metrics ) # Apply selected strategy result = await self._apply_strategy( optimal_strategy, observation, quantum_result ) return result, current_metrics except Exception as e: self.logger.error(f"Failed to optimize learning: {str(e)}") raise def _evaluate_strategy( self, strategy: LearningStrategy, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> LearningMetrics: """Evaluate performance of current learning strategy""" # Calculate accuracy accuracy = self._calculate_accuracy( strategy, observation, quantum_result ) # Calculate convergence rate convergence_rate = self._calculate_convergence_rate( strategy, self.performance_history ) # Calculate adaptation speed adaptation_speed = self._calculate_adaptation_speed( strategy, observation ) # Calculate resource usage resource_usage = self._calculate_resource_usage(strategy) return LearningMetrics( accuracy=accuracy, convergence_rate=convergence_rate, adaptation_speed=adaptation_speed, resource_usage=resource_usage ) def _update_performance_history( self, metrics: LearningMetrics ) -> None: """Update performance history with new metrics""" self.performance_history.append(metrics) # Maintain history size if len(self.performance_history) > self.meta_parameters.memory_size: self.performance_history.pop(0) def _adapt_meta_parameters( self, metrics: LearningMetrics ) -> None: """Adapt meta-parameters based on performance metrics""" # Adjust learning rate if metrics.convergence_rate < self.meta_parameters.adaptation_threshold: self.meta_parameters.learning_rate *= 0.9 else: self.meta_parameters.learning_rate *= 1.1 # Adjust memory size if metrics.resource_usage > 0.8: self.meta_parameters.memory_size = int( self.meta_parameters.memory_size * 0.9 ) elif metrics.resource_usage < 0.2: self.meta_parameters.memory_size = int( self.meta_parameters.memory_size * 1.1 ) # Adjust evolution rate if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold: self.meta_parameters.evolution_rate *= 1.1 else: self.meta_parameters.evolution_rate *= 0.9 # Adjust exploration rate if metrics.accuracy < self.meta_parameters.adaptation_threshold: self.meta_parameters.exploration_rate *= 1.1 else: self.meta_parameters.exploration_rate *= 0.9 # Adjust quantum interference if metrics.accuracy > 0.8: self.meta_parameters.quantum_interference *= 1.1 else: self.meta_parameters.quantum_interference *= 0.9 # Ensure parameters stay within reasonable bounds self._normalize_parameters() def _normalize_parameters(self) -> None: """Normalize meta-parameters to stay within bounds""" self.meta_parameters.learning_rate = np.clip( self.meta_parameters.learning_rate, 0.001, 0.1 ) self.meta_parameters.memory_size = np.clip( self.meta_parameters.memory_size, 100, 10000 ) self.meta_parameters.evolution_rate = np.clip( self.meta_parameters.evolution_rate, 0.01, 0.5 ) self.meta_parameters.exploration_rate = np.clip( self.meta_parameters.exploration_rate, 0.1, 0.9 ) self.meta_parameters.quantum_interference = np.clip( self.meta_parameters.quantum_interference, 0.1, 0.9 ) def _select_optimal_strategy( self, observation: Dict[str, Any], metrics: LearningMetrics ) -> LearningStrategy: """Select optimal learning strategy""" strategies = list(LearningStrategy) scores = [] for strategy in strategies: # Calculate strategy score score = self._calculate_strategy_score( strategy, observation, metrics ) scores.append((strategy, score)) # Select strategy with highest score optimal_strategy = max(scores, key=lambda x: x[1])[0] return optimal_strategy async def _apply_strategy( self, strategy: LearningStrategy, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> Dict[str, Any]: """Apply selected learning strategy""" if strategy == LearningStrategy.GRADIENT_BASED: return await self._apply_gradient_strategy( observation, quantum_result ) elif strategy == LearningStrategy.MEMORY_BASED: return await self._apply_memory_strategy( observation, quantum_result ) elif strategy == LearningStrategy.EVOLUTIONARY: return await self._apply_evolutionary_strategy( observation, quantum_result ) elif strategy == LearningStrategy.REINFORCEMENT: return await self._apply_reinforcement_strategy( observation, quantum_result ) else: # QUANTUM return quantum_result def _calculate_accuracy( self, strategy: LearningStrategy, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> float: """Calculate accuracy of learning strategy""" if "patterns" not in quantum_result: return 0.0 patterns = quantum_result["patterns"] if not patterns: return 0.0 # Calculate pattern confidence confidence_sum = sum(pattern.confidence for pattern in patterns) return confidence_sum / len(patterns) def _calculate_convergence_rate( self, strategy: LearningStrategy, history: List[LearningMetrics] ) -> float: """Calculate convergence rate of learning strategy""" if not history: return 0.0 # Calculate rate of improvement accuracies = [metrics.accuracy for metrics in history[-10:]] if len(accuracies) < 2: return 0.0 differences = np.diff(accuracies) return float(np.mean(differences > 0)) def _calculate_adaptation_speed( self, strategy: LearningStrategy, observation: Dict[str, Any] ) -> float: """Calculate adaptation speed of learning strategy""" if not self.performance_history: return 0.0 # Calculate time to reach adaptation threshold threshold = self.meta_parameters.adaptation_threshold for i, metrics in enumerate(self.performance_history): if metrics.accuracy >= threshold: return 1.0 / (i + 1) return 0.0 def _calculate_resource_usage( self, strategy: LearningStrategy ) -> float: """Calculate resource usage of learning strategy""" # Simulate resource usage based on strategy base_usage = { LearningStrategy.GRADIENT_BASED: 0.4, LearningStrategy.MEMORY_BASED: 0.6, LearningStrategy.EVOLUTIONARY: 0.7, LearningStrategy.REINFORCEMENT: 0.5, LearningStrategy.QUANTUM: 0.8 } return base_usage[strategy] def _calculate_strategy_score( self, strategy: LearningStrategy, observation: Dict[str, Any], metrics: LearningMetrics ) -> float: """Calculate score for learning strategy""" # Weight different factors weights = { "accuracy": 0.4, "convergence": 0.2, "adaptation": 0.2, "resources": 0.2 } score = ( weights["accuracy"] * metrics.accuracy + weights["convergence"] * metrics.convergence_rate + weights["adaptation"] * metrics.adaptation_speed + weights["resources"] * (1 - metrics.resource_usage) ) # Add exploration bonus if np.random.random() < self.meta_parameters.exploration_rate: score += 0.1 return score async def _apply_gradient_strategy( self, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> Dict[str, Any]: """Apply gradient-based learning strategy""" return { "result": "gradient_optimization", "quantum_enhanced": quantum_result, "meta_parameters": self.meta_parameters.__dict__ } async def _apply_memory_strategy( self, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> Dict[str, Any]: """Apply memory-based learning strategy""" return { "result": "memory_optimization", "quantum_enhanced": quantum_result, "meta_parameters": self.meta_parameters.__dict__ } async def _apply_evolutionary_strategy( self, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> Dict[str, Any]: """Apply evolutionary learning strategy""" return { "result": "evolutionary_optimization", "quantum_enhanced": quantum_result, "meta_parameters": self.meta_parameters.__dict__ } async def _apply_reinforcement_strategy( self, observation: Dict[str, Any], quantum_result: Dict[str, Any] ) -> Dict[str, Any]: """Apply reinforcement learning strategy""" return { "result": "reinforcement_optimization", "quantum_enhanced": quantum_result, "meta_parameters": self.meta_parameters.__dict__ }