agentic-system / reasoning /local_llm.py
Cascade Bot
fix: update model manager initialization
276480b
"""Local LLM integration for the reasoning system."""
import os
from typing import Dict, Any, Optional, AsyncGenerator, Generator
from datetime import datetime
import logging
from llama_cpp import Llama
import huggingface_hub
from .base import ReasoningStrategy
from .model_manager import ModelManager, ModelType
class LocalLLMStrategy(ReasoningStrategy):
"""Implements reasoning using local LLM."""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize the local LLM strategy."""
super().__init__()
self.config = config or {}
# Initialize model manager with model_dir from config
model_dir = self.config.get('model_dir')
self.model_manager = ModelManager(model_dir)
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
self.logger = logging.getLogger(__name__)
async def initialize(self):
"""Initialize all models."""
await self.model_manager.initialize_all_models()
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate reasoning response using appropriate local LLM."""
try:
# Determine best model for the task
task_type = context.get('task_type', 'general')
model_key = self.model_manager.get_best_model_for_task(task_type)
# Get or initialize the model
model = await self.model_manager.get_model(model_key)
if not model:
raise Exception(f"Failed to initialize {model_key} model")
# Format prompt with context
prompt = self._format_prompt(query, context)
# Generate response
response = model(
prompt,
max_tokens=1024 if model.n_ctx >= 4096 else 512,
temperature=0.7,
top_p=0.95,
repeat_penalty=1.1,
echo=False
)
# Extract and structure the response
result = self._parse_response(response['choices'][0]['text'])
return {
'success': True,
'answer': result['answer'],
'reasoning': result['reasoning'],
'confidence': result['confidence'],
'timestamp': datetime.now(),
'metadata': {
'model': model_key,
'strategy': 'local_llm',
'context_length': len(prompt),
'response_length': len(response['choices'][0]['text'])
}
}
except Exception as e:
self.logger.error(f"Error in reasoning: {e}")
return {
'success': False,
'error': str(e),
'timestamp': datetime.now()
}
def _format_prompt(self, query: str, context: Dict[str, Any]) -> str:
"""Format the prompt with query and context."""
# Include relevant context
context_str = "\n".join([
f"{k}: {v}" for k, v in context.items()
if k in ['objective', 'constraints', 'background']
])
return f"""Let's solve this problem step by step.
Context:
{context_str}
Question: {query}
Let me break this down:
1."""
def _parse_response(self, text: str) -> Dict[str, Any]:
"""Parse the response into structured output."""
# Simple parsing for now
lines = text.strip().split('\n')
return {
'answer': lines[-1] if lines else '',
'reasoning': '\n'.join(lines[:-1]) if len(lines) > 1 else '',
'confidence': 0.8 # Default confidence
}