Spaces:
Runtime error
Runtime error
""" | |
Multi-Modal Reasoning Implementation | |
---------------------------------- | |
Implements reasoning across different types of information. | |
""" | |
import logging | |
from typing import Dict, Any, List, Optional | |
from datetime import datetime | |
import json | |
import numpy as np | |
from .reasoning import ReasoningStrategy | |
class MultiModalReasoning(ReasoningStrategy): | |
"""Implements multi-modal reasoning across different types of information.""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize multi-modal reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Multi-modal specific parameters | |
self.modality_weights = self.config.get('modality_weights', { | |
'text': 0.8, | |
'image': 0.7, | |
'audio': 0.6, | |
'video': 0.5, | |
'structured': 0.7 | |
}) | |
self.cross_modal_threshold = self.config.get('cross_modal_threshold', 0.6) | |
self.integration_steps = self.config.get('integration_steps', 3) | |
self.alignment_method = self.config.get('alignment_method', 'attention') | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Process different modalities | |
modalities = await self._process_modalities(query, context) | |
# Align across modalities | |
alignment = await self._cross_modal_alignment(modalities, context) | |
# Integrated analysis | |
integration = await self._integrated_analysis(alignment, context) | |
# Generate final response | |
response = await self._generate_response(integration, context) | |
return { | |
"success": True, | |
"answer": response["conclusion"], | |
"modalities": modalities, | |
"alignment": alignment, | |
"integration": integration, | |
"confidence": response["confidence"] | |
} | |
except Exception as e: | |
logging.error(f"Error in multi-modal reasoning: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: | |
"""Process query across different modalities.""" | |
prompt = f""" | |
Process query across modalities: | |
Query: {query} | |
Context: {json.dumps(context)} | |
For each modality extract: | |
1. [Type]: Modality type | |
2. [Content]: Relevant content | |
3. [Features]: Key features | |
4. [Quality]: Content quality | |
Format as: | |
[M1] | |
Type: ... | |
Content: ... | |
Features: ... | |
Quality: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_modalities(response["answer"]) | |
async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
"""Align information across different modalities.""" | |
try: | |
# Extract modality types | |
modal_types = list(modalities.keys()) | |
# Initialize alignment results | |
alignments = [] | |
# Process each modality pair | |
for i in range(len(modal_types)): | |
for j in range(i + 1, len(modal_types)): | |
type1, type2 = modal_types[i], modal_types[j] | |
# Get items from each modality | |
items1 = modalities[type1] | |
items2 = modalities[type2] | |
# Find alignments between items | |
for item1 in items1: | |
for item2 in items2: | |
similarity = self._calculate_similarity(item1, item2) | |
if similarity > self.cross_modal_threshold: # Threshold for alignment | |
alignments.append({ | |
"type1": type1, | |
"type2": type2, | |
"item1": item1, | |
"item2": item2, | |
"similarity": similarity | |
}) | |
# Sort alignments by similarity | |
alignments.sort(key=lambda x: x["similarity"], reverse=True) | |
return alignments | |
except Exception as e: | |
logging.error(f"Error in cross-modal alignment: {str(e)}") | |
return [] | |
def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float: | |
"""Calculate similarity between two items from different modalities.""" | |
try: | |
# Extract content from items | |
content1 = str(item1.get("content", "")) | |
content2 = str(item2.get("content", "")) | |
# Calculate basic similarity (can be enhanced with more sophisticated methods) | |
common_words = set(content1.lower().split()) & set(content2.lower().split()) | |
total_words = set(content1.lower().split()) | set(content2.lower().split()) | |
if not total_words: | |
return 0.0 | |
return len(common_words) / len(total_words) | |
except Exception as e: | |
logging.error(f"Error calculating similarity: {str(e)}") | |
return 0.0 | |
async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Perform integrated multi-modal analysis: | |
Alignment: {json.dumps(alignment)} | |
Context: {json.dumps(context)} | |
For each insight: | |
1. [Insight]: Key finding | |
2. [Sources]: Contributing modalities | |
3. [Support]: Supporting evidence | |
4. [Confidence]: Confidence level | |
Format as: | |
[I1] | |
Insight: ... | |
Sources: ... | |
Support: ... | |
Confidence: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_integration(response["answer"]) | |
async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: | |
prompt = f""" | |
Generate unified multi-modal response: | |
Integration: {json.dumps(integration)} | |
Context: {json.dumps(context)} | |
Provide: | |
1. Main conclusion | |
2. Modal contributions | |
3. Integration benefits | |
4. Confidence level (0-1) | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_response(response["answer"]) | |
def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]: | |
"""Parse modalities from response.""" | |
modalities = {} | |
current_modality = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[M'): | |
if current_modality: | |
if current_modality["type"] not in modalities: | |
modalities[current_modality["type"]] = [] | |
modalities[current_modality["type"]].append(current_modality) | |
current_modality = { | |
"type": "", | |
"content": "", | |
"features": "", | |
"quality": "" | |
} | |
elif current_modality: | |
if line.startswith('Type:'): | |
current_modality["type"] = line[5:].strip() | |
elif line.startswith('Content:'): | |
current_modality["content"] = line[8:].strip() | |
elif line.startswith('Features:'): | |
current_modality["features"] = line[9:].strip() | |
elif line.startswith('Quality:'): | |
current_modality["quality"] = line[8:].strip() | |
if current_modality: | |
if current_modality["type"] not in modalities: | |
modalities[current_modality["type"]] = [] | |
modalities[current_modality["type"]].append(current_modality) | |
return modalities | |
def _parse_integration(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse integration from response.""" | |
integration = [] | |
current_insight = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[I'): | |
if current_insight: | |
integration.append(current_insight) | |
current_insight = { | |
"insight": "", | |
"sources": "", | |
"support": "", | |
"confidence": 0.0 | |
} | |
elif current_insight: | |
if line.startswith('Insight:'): | |
current_insight["insight"] = line[8:].strip() | |
elif line.startswith('Sources:'): | |
current_insight["sources"] = line[8:].strip() | |
elif line.startswith('Support:'): | |
current_insight["support"] = line[8:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
current_insight["confidence"] = float(line[11:].strip()) | |
except: | |
pass | |
if current_insight: | |
integration.append(current_insight) | |
return integration | |
def _parse_response(self, response: str) -> Dict[str, Any]: | |
"""Parse response from response.""" | |
response_dict = { | |
"conclusion": "", | |
"modal_contributions": [], | |
"integration_benefits": [], | |
"confidence": 0.0 | |
} | |
mode = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('Conclusion:'): | |
response_dict["conclusion"] = line[11:].strip() | |
elif line.startswith('Modal Contributions:'): | |
mode = "modal" | |
elif line.startswith('Integration Benefits:'): | |
mode = "integration" | |
elif line.startswith('Confidence:'): | |
try: | |
response_dict["confidence"] = float(line[11:].strip()) | |
except: | |
response_dict["confidence"] = 0.5 | |
mode = None | |
elif mode == "modal" and line.startswith('- '): | |
response_dict["modal_contributions"].append(line[2:].strip()) | |
elif mode == "integration" and line.startswith('- '): | |
response_dict["integration_benefits"].append(line[2:].strip()) | |
return response_dict | |