Spaces:
Runtime error
Runtime error
""" | |
Meta-Learning System | |
------------------ | |
Implements meta-learning capabilities for improved learning and adaptation. | |
""" | |
from typing import Dict, Any, List, Optional, Tuple | |
import numpy as np | |
from dataclasses import dataclass, field | |
import logging | |
from datetime import datetime | |
from enum import Enum | |
import json | |
from quantum_learning import QuantumLearningSystem, Pattern, PatternType | |
class LearningStrategy(Enum): | |
GRADIENT_BASED = "gradient_based" | |
MEMORY_BASED = "memory_based" | |
EVOLUTIONARY = "evolutionary" | |
REINFORCEMENT = "reinforcement" | |
QUANTUM = "quantum" | |
class MetaParameters: | |
"""Meta-parameters for learning strategies""" | |
learning_rate: float = 0.01 | |
memory_size: int = 1000 | |
evolution_rate: float = 0.1 | |
exploration_rate: float = 0.2 | |
quantum_interference: float = 0.5 | |
adaptation_threshold: float = 0.7 | |
class LearningMetrics: | |
"""Metrics for learning performance""" | |
accuracy: float | |
convergence_rate: float | |
adaptation_speed: float | |
resource_usage: float | |
timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
class MetaLearningSystem: | |
"""Meta-learning system for optimizing learning strategies""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
self.logger = logging.getLogger(__name__) | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Initialize quantum system with shared config | |
quantum_config = { | |
'min_confidence': self.min_confidence, | |
'parallel_threshold': self.parallel_threshold, | |
'learning_rate': self.learning_rate, | |
'strategy_weights': self.strategy_weights, | |
'num_qubits': self.config.get('num_qubits', 8), | |
'entanglement_strength': self.config.get('entanglement_strength', 0.5), | |
'interference_threshold': self.config.get('interference_threshold', 0.3), | |
'tunneling_rate': self.config.get('tunneling_rate', 0.1), | |
'annealing_schedule': self.config.get('annealing_schedule', { | |
'initial_temp': 1.0, | |
'final_temp': 0.01, | |
'steps': 100, | |
'cooling_rate': 0.95 | |
}) | |
} | |
self.quantum_system = QuantumLearningSystem(quantum_config) | |
self.strategies = {} | |
self.performance_history = [] | |
self.meta_parameters = MetaParameters() | |
async def optimize_learning( | |
self, | |
observation: Dict[str, Any], | |
current_strategy: LearningStrategy | |
) -> Tuple[Dict[str, Any], LearningMetrics]: | |
"""Optimize learning strategy based on observation""" | |
try: | |
# Process with quantum system | |
quantum_result = await self.quantum_system.process_observation(observation) | |
# Evaluate current strategy | |
current_metrics = self._evaluate_strategy( | |
current_strategy, | |
observation, | |
quantum_result | |
) | |
# Update performance history | |
self._update_performance_history(current_metrics) | |
# Adapt meta-parameters | |
self._adapt_meta_parameters(current_metrics) | |
# Select optimal strategy | |
optimal_strategy = self._select_optimal_strategy( | |
observation, | |
current_metrics | |
) | |
# Apply selected strategy | |
result = await self._apply_strategy( | |
optimal_strategy, | |
observation, | |
quantum_result | |
) | |
return result, current_metrics | |
except Exception as e: | |
self.logger.error(f"Failed to optimize learning: {str(e)}") | |
raise | |
def _evaluate_strategy( | |
self, | |
strategy: LearningStrategy, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> LearningMetrics: | |
"""Evaluate performance of current learning strategy""" | |
# Calculate accuracy | |
accuracy = self._calculate_accuracy( | |
strategy, | |
observation, | |
quantum_result | |
) | |
# Calculate convergence rate | |
convergence_rate = self._calculate_convergence_rate( | |
strategy, | |
self.performance_history | |
) | |
# Calculate adaptation speed | |
adaptation_speed = self._calculate_adaptation_speed( | |
strategy, | |
observation | |
) | |
# Calculate resource usage | |
resource_usage = self._calculate_resource_usage(strategy) | |
return LearningMetrics( | |
accuracy=accuracy, | |
convergence_rate=convergence_rate, | |
adaptation_speed=adaptation_speed, | |
resource_usage=resource_usage | |
) | |
def _update_performance_history( | |
self, | |
metrics: LearningMetrics | |
) -> None: | |
"""Update performance history with new metrics""" | |
self.performance_history.append(metrics) | |
# Maintain history size | |
if len(self.performance_history) > self.meta_parameters.memory_size: | |
self.performance_history.pop(0) | |
def _adapt_meta_parameters( | |
self, | |
metrics: LearningMetrics | |
) -> None: | |
"""Adapt meta-parameters based on performance metrics""" | |
# Adjust learning rate | |
if metrics.convergence_rate < self.meta_parameters.adaptation_threshold: | |
self.meta_parameters.learning_rate *= 0.9 | |
else: | |
self.meta_parameters.learning_rate *= 1.1 | |
# Adjust memory size | |
if metrics.resource_usage > 0.8: | |
self.meta_parameters.memory_size = int( | |
self.meta_parameters.memory_size * 0.9 | |
) | |
elif metrics.resource_usage < 0.2: | |
self.meta_parameters.memory_size = int( | |
self.meta_parameters.memory_size * 1.1 | |
) | |
# Adjust evolution rate | |
if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold: | |
self.meta_parameters.evolution_rate *= 1.1 | |
else: | |
self.meta_parameters.evolution_rate *= 0.9 | |
# Adjust exploration rate | |
if metrics.accuracy < self.meta_parameters.adaptation_threshold: | |
self.meta_parameters.exploration_rate *= 1.1 | |
else: | |
self.meta_parameters.exploration_rate *= 0.9 | |
# Adjust quantum interference | |
if metrics.accuracy > 0.8: | |
self.meta_parameters.quantum_interference *= 1.1 | |
else: | |
self.meta_parameters.quantum_interference *= 0.9 | |
# Ensure parameters stay within reasonable bounds | |
self._normalize_parameters() | |
def _normalize_parameters(self) -> None: | |
"""Normalize meta-parameters to stay within bounds""" | |
self.meta_parameters.learning_rate = np.clip( | |
self.meta_parameters.learning_rate, | |
0.001, | |
0.1 | |
) | |
self.meta_parameters.memory_size = np.clip( | |
self.meta_parameters.memory_size, | |
100, | |
10000 | |
) | |
self.meta_parameters.evolution_rate = np.clip( | |
self.meta_parameters.evolution_rate, | |
0.01, | |
0.5 | |
) | |
self.meta_parameters.exploration_rate = np.clip( | |
self.meta_parameters.exploration_rate, | |
0.1, | |
0.9 | |
) | |
self.meta_parameters.quantum_interference = np.clip( | |
self.meta_parameters.quantum_interference, | |
0.1, | |
0.9 | |
) | |
def _select_optimal_strategy( | |
self, | |
observation: Dict[str, Any], | |
metrics: LearningMetrics | |
) -> LearningStrategy: | |
"""Select optimal learning strategy""" | |
strategies = list(LearningStrategy) | |
scores = [] | |
for strategy in strategies: | |
# Calculate strategy score | |
score = self._calculate_strategy_score( | |
strategy, | |
observation, | |
metrics | |
) | |
scores.append((strategy, score)) | |
# Select strategy with highest score | |
optimal_strategy = max(scores, key=lambda x: x[1])[0] | |
return optimal_strategy | |
async def _apply_strategy( | |
self, | |
strategy: LearningStrategy, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Apply selected learning strategy""" | |
if strategy == LearningStrategy.GRADIENT_BASED: | |
return await self._apply_gradient_strategy( | |
observation, | |
quantum_result | |
) | |
elif strategy == LearningStrategy.MEMORY_BASED: | |
return await self._apply_memory_strategy( | |
observation, | |
quantum_result | |
) | |
elif strategy == LearningStrategy.EVOLUTIONARY: | |
return await self._apply_evolutionary_strategy( | |
observation, | |
quantum_result | |
) | |
elif strategy == LearningStrategy.REINFORCEMENT: | |
return await self._apply_reinforcement_strategy( | |
observation, | |
quantum_result | |
) | |
else: # QUANTUM | |
return quantum_result | |
def _calculate_accuracy( | |
self, | |
strategy: LearningStrategy, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> float: | |
"""Calculate accuracy of learning strategy""" | |
if "patterns" not in quantum_result: | |
return 0.0 | |
patterns = quantum_result["patterns"] | |
if not patterns: | |
return 0.0 | |
# Calculate pattern confidence | |
confidence_sum = sum(pattern.confidence for pattern in patterns) | |
return confidence_sum / len(patterns) | |
def _calculate_convergence_rate( | |
self, | |
strategy: LearningStrategy, | |
history: List[LearningMetrics] | |
) -> float: | |
"""Calculate convergence rate of learning strategy""" | |
if not history: | |
return 0.0 | |
# Calculate rate of improvement | |
accuracies = [metrics.accuracy for metrics in history[-10:]] | |
if len(accuracies) < 2: | |
return 0.0 | |
differences = np.diff(accuracies) | |
return float(np.mean(differences > 0)) | |
def _calculate_adaptation_speed( | |
self, | |
strategy: LearningStrategy, | |
observation: Dict[str, Any] | |
) -> float: | |
"""Calculate adaptation speed of learning strategy""" | |
if not self.performance_history: | |
return 0.0 | |
# Calculate time to reach adaptation threshold | |
threshold = self.meta_parameters.adaptation_threshold | |
for i, metrics in enumerate(self.performance_history): | |
if metrics.accuracy >= threshold: | |
return 1.0 / (i + 1) | |
return 0.0 | |
def _calculate_resource_usage( | |
self, | |
strategy: LearningStrategy | |
) -> float: | |
"""Calculate resource usage of learning strategy""" | |
# Simulate resource usage based on strategy | |
base_usage = { | |
LearningStrategy.GRADIENT_BASED: 0.4, | |
LearningStrategy.MEMORY_BASED: 0.6, | |
LearningStrategy.EVOLUTIONARY: 0.7, | |
LearningStrategy.REINFORCEMENT: 0.5, | |
LearningStrategy.QUANTUM: 0.8 | |
} | |
return base_usage[strategy] | |
def _calculate_strategy_score( | |
self, | |
strategy: LearningStrategy, | |
observation: Dict[str, Any], | |
metrics: LearningMetrics | |
) -> float: | |
"""Calculate score for learning strategy""" | |
# Weight different factors | |
weights = { | |
"accuracy": 0.4, | |
"convergence": 0.2, | |
"adaptation": 0.2, | |
"resources": 0.2 | |
} | |
score = ( | |
weights["accuracy"] * metrics.accuracy + | |
weights["convergence"] * metrics.convergence_rate + | |
weights["adaptation"] * metrics.adaptation_speed + | |
weights["resources"] * (1 - metrics.resource_usage) | |
) | |
# Add exploration bonus | |
if np.random.random() < self.meta_parameters.exploration_rate: | |
score += 0.1 | |
return score | |
async def _apply_gradient_strategy( | |
self, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Apply gradient-based learning strategy""" | |
return { | |
"result": "gradient_optimization", | |
"quantum_enhanced": quantum_result, | |
"meta_parameters": self.meta_parameters.__dict__ | |
} | |
async def _apply_memory_strategy( | |
self, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Apply memory-based learning strategy""" | |
return { | |
"result": "memory_optimization", | |
"quantum_enhanced": quantum_result, | |
"meta_parameters": self.meta_parameters.__dict__ | |
} | |
async def _apply_evolutionary_strategy( | |
self, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Apply evolutionary learning strategy""" | |
return { | |
"result": "evolutionary_optimization", | |
"quantum_enhanced": quantum_result, | |
"meta_parameters": self.meta_parameters.__dict__ | |
} | |
async def _apply_reinforcement_strategy( | |
self, | |
observation: Dict[str, Any], | |
quantum_result: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Apply reinforcement learning strategy""" | |
return { | |
"result": "reinforcement_optimization", | |
"quantum_enhanced": quantum_result, | |
"meta_parameters": self.meta_parameters.__dict__ | |
} | |