File size: 11,317 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
"""Advanced meta-learning strategy for adaptive reasoning."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class MetaTask:
    """Meta-learning task with parameters and performance metrics."""
    name: str
    parameters: Dict[str, Any]
    metrics: Dict[str, float]
    history: List[Dict[str, Any]] = field(default_factory=list)

class MetaLearningStrategy(ReasoningStrategy):
    """
    Advanced meta-learning strategy that:
    1. Adapts to new tasks
    2. Learns from experience
    3. Optimizes parameters
    4. Transfers knowledge
    5. Improves over time
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize meta-learning strategy."""
        super().__init__()
        self.config = config or {}
        
        # Configure parameters
        self.learning_rate = self.config.get('learning_rate', 0.01)
        self.memory_size = self.config.get('memory_size', 100)
        self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
        
        # Initialize task memory
        self.task_memory: List[MetaTask] = []
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Apply meta-learning to adapt and optimize reasoning.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            Dict containing reasoning results and confidence scores
        """
        try:
            # Identify similar tasks
            similar_tasks = await self._find_similar_tasks(query, context)
            
            # Adapt parameters
            adapted_params = await self._adapt_parameters(similar_tasks, context)
            
            # Apply meta-learning
            results = await self._apply_meta_learning(
                query,
                adapted_params,
                context
            )
            
            # Update memory
            await self._update_memory(query, results, context)
            
            # Generate analysis
            analysis = await self._generate_analysis(results, context)
            
            return {
                'answer': self._format_analysis(analysis),
                'confidence': self._calculate_confidence(results),
                'similar_tasks': similar_tasks,
                'adapted_params': adapted_params,
                'results': results,
                'analysis': analysis
            }
            
        except Exception as e:
            logging.error(f"Meta-learning failed: {str(e)}")
            return {
                'error': f"Meta-learning failed: {str(e)}",
                'confidence': 0.0
            }
    
    async def _find_similar_tasks(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> List[MetaTask]:
        """Find similar tasks in memory."""
        similar_tasks = []
        
        # Extract query features
        query_features = self._extract_features(query)
        
        for task in self.task_memory:
            # Calculate similarity
            similarity = self._calculate_similarity(
                query_features,
                self._extract_features(task.name)
            )
            
            if similarity > self.adaptation_threshold:
                similar_tasks.append(task)
        
        # Sort by similarity
        similar_tasks.sort(
            key=lambda x: np.mean(list(x.metrics.values())),
            reverse=True
        )
        
        return similar_tasks
    
    def _extract_features(self, text: str) -> np.ndarray:
        """Extract features from text."""
        # Simple bag of words for now
        words = set(text.lower().split())
        return np.array([hash(word) % 100 for word in words])
    
    def _calculate_similarity(
        self,
        features1: np.ndarray,
        features2: np.ndarray
    ) -> float:
        """Calculate similarity between feature sets."""
        # Simple Jaccard similarity
        intersection = np.intersect1d(features1, features2)
        union = np.union1d(features1, features2)
        
        return len(intersection) / len(union) if len(union) > 0 else 0
    
    async def _adapt_parameters(
        self,
        similar_tasks: List[MetaTask],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Adapt parameters based on similar tasks."""
        if not similar_tasks:
            return self.config.copy()
        
        adapted_params = {}
        
        # Weight tasks by performance
        total_performance = sum(
            np.mean(list(task.metrics.values()))
            for task in similar_tasks
        )
        
        if total_performance > 0:
            # Weighted average of parameters
            for param_name in self.config:
                adapted_params[param_name] = sum(
                    task.parameters.get(param_name, self.config[param_name]) *
                    (np.mean(list(task.metrics.values())) / total_performance)
                    for task in similar_tasks
                )
        else:
            adapted_params = self.config.copy()
        
        return adapted_params
    
    async def _apply_meta_learning(
        self,
        query: str,
        parameters: Dict[str, Any],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Apply meta-learning with adapted parameters."""
        results = {
            'query': query,
            'parameters': parameters,
            'metrics': {}
        }
        
        # Apply learning rate
        for param_name, value in parameters.items():
            if isinstance(value, (int, float)):
                results['parameters'][param_name] = (
                    value * (1 - self.learning_rate) +
                    self.config[param_name] * self.learning_rate
                )
        
        # Calculate performance metrics
        results['metrics'] = {
            'adaptation_score': np.mean([
                p / self.config[name]
                for name, p in results['parameters'].items()
                if isinstance(p, (int, float)) and self.config[name] != 0
            ]),
            'novelty_score': 1 - max(
                self._calculate_similarity(
                    self._extract_features(query),
                    self._extract_features(task.name)
                )
                for task in self.task_memory
            ) if self.task_memory else 1.0
        }
        
        return results
    
    async def _update_memory(
        self,
        query: str,
        results: Dict[str, Any],
        context: Dict[str, Any]
    ) -> None:
        """Update task memory."""
        # Create new task
        task = MetaTask(
            name=query,
            parameters=results['parameters'],
            metrics=results['metrics'],
            history=[{
                'timestamp': datetime.now().isoformat(),
                'context': context,
                'results': results
            }]
        )
        
        # Add to memory
        self.task_memory.append(task)
        
        # Maintain memory size
        if len(self.task_memory) > self.memory_size:
            # Remove worst performing task
            self.task_memory.sort(
                key=lambda x: np.mean(list(x.metrics.values()))
            )
            self.task_memory.pop(0)
    
    async def _generate_analysis(
        self,
        results: Dict[str, Any],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Generate meta-learning analysis."""
        # Calculate statistics
        param_stats = {
            name: {
                'value': value,
                'adaptation': value / self.config[name]
                if isinstance(value, (int, float)) and self.config[name] != 0
                else 1.0
            }
            for name, value in results['parameters'].items()
        }
        
        # Calculate overall metrics
        metrics = {
            'adaptation_score': results['metrics']['adaptation_score'],
            'novelty_score': results['metrics']['novelty_score'],
            'memory_usage': len(self.task_memory) / self.memory_size
        }
        
        return {
            'parameters': param_stats,
            'metrics': metrics,
            'memory_size': len(self.task_memory),
            'total_tasks_seen': len(self.task_memory)
        }
    
    def _format_analysis(self, analysis: Dict[str, Any]) -> str:
        """Format analysis into readable text."""
        sections = []
        
        # Parameter adaptations
        sections.append("Parameter adaptations:")
        for name, stats in analysis['parameters'].items():
            sections.append(
                f"- {name}: {stats['value']:.2f} "
                f"({stats['adaptation']:.1%} of original)"
            )
        
        # Performance metrics
        sections.append("\nPerformance metrics:")
        metrics = analysis['metrics']
        sections.append(f"- Adaptation score: {metrics['adaptation_score']:.1%}")
        sections.append(f"- Novelty score: {metrics['novelty_score']:.1%}")
        sections.append(f"- Memory usage: {metrics['memory_usage']:.1%}")
        
        # Memory statistics
        sections.append("\nMemory statistics:")
        sections.append(f"- Current tasks in memory: {analysis['memory_size']}")
        sections.append(f"- Total tasks seen: {analysis['total_tasks_seen']}")
        
        return "\n".join(sections)
    
    def _calculate_confidence(self, results: Dict[str, Any]) -> float:
        """Calculate overall confidence score."""
        if not results.get('metrics'):
            return 0.0
        
        # Base confidence
        confidence = 0.5
        
        # Adjust based on adaptation score
        adaptation_score = results['metrics']['adaptation_score']
        if adaptation_score > 0.8:
            confidence += 0.3
        elif adaptation_score > 0.6:
            confidence += 0.2
        elif adaptation_score > 0.4:
            confidence += 0.1
        
        # Adjust based on novelty
        novelty_score = results['metrics']['novelty_score']
        if novelty_score < 0.2:  # Very similar to known tasks
            confidence += 0.2
        elif novelty_score < 0.4:
            confidence += 0.1
        
        return min(confidence, 1.0)

    def get_performance_metrics(self) -> Dict[str, Any]:
        """Get current performance metrics."""
        return {
            "success_rate": 0.0,
            "adaptation_rate": 0.0,
            "exploration_count": 0,
            "episode_count": len(self.task_memory),
            "pattern_count": 0,
            "learning_rate": self.learning_rate,
            "exploration_rate": 0.0
        }

    def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
        """Get top performing patterns."""
        return []

    def clear_memory(self):
        """Clear learning memory."""
        self.task_memory.clear()