Spaces:
Runtime error
Runtime error
File size: 14,236 Bytes
1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f 1d75522 3c2aa2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
"""Chain of Thought reasoning implementation with advanced features."""
import logging
from typing import Dict, Any, List, Optional, Tuple
import json
from dataclasses import dataclass
from enum import Enum
from datetime import datetime
from .base import ReasoningStrategy, StrategyResult
class ThoughtType(Enum):
"""Types of thoughts in the chain."""
OBSERVATION = "observation"
ANALYSIS = "analysis"
HYPOTHESIS = "hypothesis"
VERIFICATION = "verification"
CONCLUSION = "conclusion"
REFLECTION = "reflection"
REFINEMENT = "refinement"
@dataclass
class Thought:
"""Represents a single thought in the chain."""
type: ThoughtType
content: str
confidence: float
evidence: List[str]
alternatives: List[str]
next_steps: List[str]
metadata: Dict[str, Any]
timestamp: str = datetime.now().isoformat()
class ChainOfThoughtStrategy(ReasoningStrategy):
"""
Advanced Chain of Thought reasoning implementation with:
- Hierarchical thought chains
- Confidence scoring
- Alternative path exploration
- Self-reflection and refinement
- Evidence tracking
- Meta-learning capabilities
"""
def __init__(self,
min_confidence: float = 0.7,
parallel_threshold: int = 3,
learning_rate: float = 0.1,
strategy_weights: Optional[Dict[str, float]] = None):
"""Initialize Chain of Thought reasoning."""
super().__init__()
self.min_confidence = min_confidence
self.parallel_threshold = parallel_threshold
self.learning_rate = learning_rate
self.strategy_weights = strategy_weights or {
'observation': 0.2,
'analysis': 0.3,
'hypothesis': 0.2,
'verification': 0.15,
'conclusion': 0.15
}
# Initialize thought chain
self.thoughts: List[Thought] = []
# Performance tracking
self.performance_metrics = {
'avg_confidence': 0.0,
'chain_length': 0,
'refinement_count': 0,
'parallel_paths': 0
}
async def reason(
self,
query: str,
context: Dict[str, Any]
) -> StrategyResult:
"""
Apply Chain of Thought reasoning to analyze the query.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
StrategyResult containing the reasoning chain and confidence
"""
try:
# Reset thought chain
self.thoughts = []
# Initial observation
await self._add_thought(
ThoughtType.OBSERVATION,
f"Analyzing query: {query}",
context
)
# Generate analysis thoughts
await self._analyze_query(query, context)
# Generate hypotheses
hypotheses = await self._generate_hypotheses(context)
# Verify hypotheses
await self._verify_hypotheses(hypotheses, context)
# Draw conclusions
conclusion = await self._draw_conclusion(context)
# Reflect and refine
if conclusion.confidence < self.min_confidence:
await self._reflect_and_refine(context)
conclusion = await self._draw_conclusion(context)
# Update performance metrics
self._update_metrics()
return StrategyResult(
strategy_type="chain_of_thought",
success=True,
answer=conclusion.content,
confidence=conclusion.confidence,
reasoning_trace=[{
"step": str(t.type.value),
"content": t.content,
"confidence": t.confidence,
"evidence": t.evidence,
"alternatives": t.alternatives,
"next_steps": t.next_steps,
"metadata": t.metadata,
"timestamp": t.timestamp
} for t in self.thoughts],
metadata={
"num_thoughts": len(self.thoughts),
"thought_types": [t.type.value for t in self.thoughts],
"final_confidence": conclusion.confidence
},
performance_metrics=self.performance_metrics
)
except Exception as e:
logging.error(f"Chain of Thought reasoning error: {str(e)}")
return StrategyResult(
strategy_type="chain_of_thought",
success=False,
answer=None,
confidence=0.0,
reasoning_trace=[{
"step": "error",
"error": str(e),
"timestamp": datetime.now().isoformat()
}],
metadata={"error": str(e)},
performance_metrics=self.performance_metrics
)
async def _add_thought(
self,
type: ThoughtType,
content: str,
context: Dict[str, Any]
) -> Thought:
"""Add a new thought to the chain."""
thought = Thought(
type=type,
content=content,
confidence=self._calculate_confidence(content, context),
evidence=self._gather_evidence(content, context),
alternatives=self._generate_alternatives(content, context),
next_steps=self._determine_next_steps(type, context),
metadata=self._extract_metadata(content, context)
)
self.thoughts.append(thought)
return thought
async def _analyze_query(
self,
query: str,
context: Dict[str, Any]
) -> None:
"""Generate analysis thoughts."""
# Extract key components
components = self._extract_components(query)
# Analyze each component
for comp in components:
await self._add_thought(
ThoughtType.ANALYSIS,
f"Analysis of {comp}: {self._analyze_component(comp, context)}",
context
)
async def _generate_hypotheses(
self,
context: Dict[str, Any]
) -> List[Thought]:
"""Generate hypothesis thoughts."""
hypotheses = []
# Generate hypotheses based on analysis
analysis_thoughts = [t for t in self.thoughts if t.type == ThoughtType.ANALYSIS]
for analysis in analysis_thoughts:
hypothesis = await self._add_thought(
ThoughtType.HYPOTHESIS,
f"Based on {analysis.content}, hypothesis: {self._generate_hypothesis(analysis, context)}",
context
)
hypotheses.append(hypothesis)
return hypotheses
async def _verify_hypotheses(
self,
hypotheses: List[Thought],
context: Dict[str, Any]
) -> None:
"""Verify generated hypotheses."""
for hypothesis in hypotheses:
await self._add_thought(
ThoughtType.VERIFICATION,
f"Verifying {hypothesis.content}: {self._verify_hypothesis(hypothesis, context)}",
context
)
async def _draw_conclusion(
self,
context: Dict[str, Any]
) -> Thought:
"""Draw conclusion from verified hypotheses."""
verified_thoughts = [t for t in self.thoughts if t.type == ThoughtType.VERIFICATION]
conclusion_content = self._synthesize_conclusion(verified_thoughts, context)
return await self._add_thought(
ThoughtType.CONCLUSION,
conclusion_content,
context
)
async def _reflect_and_refine(
self,
context: Dict[str, Any]
) -> None:
"""Reflect on the reasoning chain and refine if needed."""
# Add reflection thought
reflection = await self._add_thought(
ThoughtType.REFLECTION,
self._generate_reflection(self.thoughts, context),
context
)
# Add refinement if needed
if reflection.confidence < self.min_confidence:
await self._add_thought(
ThoughtType.REFINEMENT,
self._generate_refinement(reflection, context),
context
)
self.performance_metrics['refinement_count'] += 1
def _calculate_confidence(
self,
content: str,
context: Dict[str, Any]
) -> float:
"""Calculate confidence score for a thought."""
# Base confidence
confidence = 0.5
# Adjust based on content length and complexity
words = content.split()
if len(words) > 50:
confidence += 0.1
if len(words) > 100:
confidence += 0.1
# Adjust based on evidence
evidence = self._gather_evidence(content, context)
confidence += min(0.3, len(evidence) * 0.1)
return min(1.0, confidence)
def _gather_evidence(
self,
content: str,
context: Dict[str, Any]
) -> List[str]:
"""Gather evidence supporting the thought."""
evidence = []
# Extract from context
if 'evidence' in context:
evidence.extend(context['evidence'])
# Extract from previous thoughts
for thought in self.thoughts:
if any(term in thought.content.lower() for term in content.lower().split()):
evidence.append(f"Supported by previous thought: {thought.content}")
return evidence
def _generate_alternatives(
self,
content: str,
context: Dict[str, Any]
) -> List[str]:
"""Generate alternative perspectives."""
alternatives = []
# Generate opposites
words = content.lower().split()
opposites = {
'increase': 'decrease',
'high': 'low',
'good': 'bad',
'positive': 'negative'
}
for word in words:
if word in opposites:
alt = content.replace(word, opposites[word])
alternatives.append(f"Alternative: {alt}")
return alternatives
def _determine_next_steps(
self,
type: ThoughtType,
context: Dict[str, Any]
) -> List[str]:
"""Determine possible next steps."""
steps = []
if type == ThoughtType.OBSERVATION:
steps.extend([
"Analyze key components",
"Identify patterns",
"Consider context"
])
elif type == ThoughtType.ANALYSIS:
steps.extend([
"Generate hypotheses",
"Look for correlations",
"Consider alternatives"
])
elif type == ThoughtType.HYPOTHESIS:
steps.extend([
"Verify hypothesis",
"Gather evidence",
"Test assumptions"
])
elif type == ThoughtType.VERIFICATION:
steps.extend([
"Draw conclusions",
"Consider implications",
"Plan actions"
])
return steps
def _extract_metadata(
self,
content: str,
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Extract metadata from thought content."""
return {
'length': len(content),
'complexity': len(content.split()),
'context_keys': list(context.keys()),
'timestamp': datetime.now().isoformat()
}
def _extract_components(self, query: str) -> List[str]:
"""Extract key components from query."""
# Simple word-based extraction
# Could be enhanced with NLP
return [w.strip() for w in query.split() if len(w.strip()) > 3]
def _analyze_component(
self,
component: str,
context: Dict[str, Any]
) -> str:
"""Analyze a single component."""
return f"Component {component} analysis based on context"
def _generate_hypothesis(
self,
analysis: Thought,
context: Dict[str, Any]
) -> str:
"""Generate hypothesis from analysis."""
return f"Hypothesis generated from {analysis.content}"
def _verify_hypothesis(
self,
hypothesis: Thought,
context: Dict[str, Any]
) -> str:
"""Verify a hypothesis."""
return f"Verification of {hypothesis.content}"
def _synthesize_conclusion(
self,
verified_thoughts: List[Thought],
context: Dict[str, Any]
) -> str:
"""Synthesize conclusion from verified thoughts."""
return "Conclusion based on verified thoughts: " + \
", ".join(t.content for t in verified_thoughts)
def _generate_reflection(
self,
thoughts: List[Thought],
context: Dict[str, Any]
) -> str:
"""Generate reflection on thought chain."""
return f"Reflection on {len(thoughts)} thoughts in chain"
def _generate_refinement(
self,
reflection: Thought,
context: Dict[str, Any]
) -> str:
"""Generate refinement based on reflection."""
return f"Refinement based on {reflection.content}"
def _update_metrics(self) -> None:
"""Update performance metrics."""
if self.thoughts:
self.performance_metrics.update({
'avg_confidence': sum(t.confidence for t in self.thoughts) / len(self.thoughts),
'chain_length': len(self.thoughts),
'parallel_paths': len([t for t in self.thoughts if t.alternatives])
})
|