File size: 14,236 Bytes
1d75522
 
 
 
 
 
 
3c2aa2f
1d75522
3c2aa2f
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2aa2f
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2aa2f
 
1d75522
 
 
 
3c2aa2f
 
 
 
 
1d75522
 
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
1d75522
 
3c2aa2f
 
 
1d75522
3c2aa2f
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
 
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
1d75522
3c2aa2f
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
1d75522
3c2aa2f
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
1d75522
3c2aa2f
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
1d75522
3c2aa2f
 
 
 
1d75522
3c2aa2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
"""Chain of Thought reasoning implementation with advanced features."""

import logging
from typing import Dict, Any, List, Optional, Tuple
import json
from dataclasses import dataclass
from enum import Enum
from datetime import datetime

from .base import ReasoningStrategy, StrategyResult

class ThoughtType(Enum):
    """Types of thoughts in the chain."""
    OBSERVATION = "observation"
    ANALYSIS = "analysis"
    HYPOTHESIS = "hypothesis"
    VERIFICATION = "verification"
    CONCLUSION = "conclusion"
    REFLECTION = "reflection"
    REFINEMENT = "refinement"

@dataclass
class Thought:
    """Represents a single thought in the chain."""
    type: ThoughtType
    content: str
    confidence: float
    evidence: List[str]
    alternatives: List[str]
    next_steps: List[str]
    metadata: Dict[str, Any]
    timestamp: str = datetime.now().isoformat()

class ChainOfThoughtStrategy(ReasoningStrategy):
    """
    Advanced Chain of Thought reasoning implementation with:
    - Hierarchical thought chains
    - Confidence scoring
    - Alternative path exploration
    - Self-reflection and refinement
    - Evidence tracking
    - Meta-learning capabilities
    """
    
    def __init__(self, 
                 min_confidence: float = 0.7,
                 parallel_threshold: int = 3,
                 learning_rate: float = 0.1,
                 strategy_weights: Optional[Dict[str, float]] = None):
        """Initialize Chain of Thought reasoning."""
        super().__init__()
        self.min_confidence = min_confidence
        self.parallel_threshold = parallel_threshold
        self.learning_rate = learning_rate
        self.strategy_weights = strategy_weights or {
            'observation': 0.2,
            'analysis': 0.3,
            'hypothesis': 0.2,
            'verification': 0.15,
            'conclusion': 0.15
        }
        
        # Initialize thought chain
        self.thoughts: List[Thought] = []
        
        # Performance tracking
        self.performance_metrics = {
            'avg_confidence': 0.0,
            'chain_length': 0,
            'refinement_count': 0,
            'parallel_paths': 0
        }
    
    async def reason(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> StrategyResult:
        """
        Apply Chain of Thought reasoning to analyze the query.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            StrategyResult containing the reasoning chain and confidence
        """
        try:
            # Reset thought chain
            self.thoughts = []
            
            # Initial observation
            await self._add_thought(
                ThoughtType.OBSERVATION,
                f"Analyzing query: {query}",
                context
            )
            
            # Generate analysis thoughts
            await self._analyze_query(query, context)
            
            # Generate hypotheses
            hypotheses = await self._generate_hypotheses(context)
            
            # Verify hypotheses
            await self._verify_hypotheses(hypotheses, context)
            
            # Draw conclusions
            conclusion = await self._draw_conclusion(context)
            
            # Reflect and refine
            if conclusion.confidence < self.min_confidence:
                await self._reflect_and_refine(context)
                conclusion = await self._draw_conclusion(context)
            
            # Update performance metrics
            self._update_metrics()
            
            return StrategyResult(
                strategy_type="chain_of_thought",
                success=True,
                answer=conclusion.content,
                confidence=conclusion.confidence,
                reasoning_trace=[{
                    "step": str(t.type.value),
                    "content": t.content,
                    "confidence": t.confidence,
                    "evidence": t.evidence,
                    "alternatives": t.alternatives,
                    "next_steps": t.next_steps,
                    "metadata": t.metadata,
                    "timestamp": t.timestamp
                } for t in self.thoughts],
                metadata={
                    "num_thoughts": len(self.thoughts),
                    "thought_types": [t.type.value for t in self.thoughts],
                    "final_confidence": conclusion.confidence
                },
                performance_metrics=self.performance_metrics
            )
            
        except Exception as e:
            logging.error(f"Chain of Thought reasoning error: {str(e)}")
            return StrategyResult(
                strategy_type="chain_of_thought",
                success=False,
                answer=None,
                confidence=0.0,
                reasoning_trace=[{
                    "step": "error",
                    "error": str(e),
                    "timestamp": datetime.now().isoformat()
                }],
                metadata={"error": str(e)},
                performance_metrics=self.performance_metrics
            )
    
    async def _add_thought(
        self,
        type: ThoughtType,
        content: str,
        context: Dict[str, Any]
    ) -> Thought:
        """Add a new thought to the chain."""
        thought = Thought(
            type=type,
            content=content,
            confidence=self._calculate_confidence(content, context),
            evidence=self._gather_evidence(content, context),
            alternatives=self._generate_alternatives(content, context),
            next_steps=self._determine_next_steps(type, context),
            metadata=self._extract_metadata(content, context)
        )
        self.thoughts.append(thought)
        return thought
    
    async def _analyze_query(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> None:
        """Generate analysis thoughts."""
        # Extract key components
        components = self._extract_components(query)
        
        # Analyze each component
        for comp in components:
            await self._add_thought(
                ThoughtType.ANALYSIS,
                f"Analysis of {comp}: {self._analyze_component(comp, context)}",
                context
            )
    
    async def _generate_hypotheses(
        self,
        context: Dict[str, Any]
    ) -> List[Thought]:
        """Generate hypothesis thoughts."""
        hypotheses = []
        
        # Generate hypotheses based on analysis
        analysis_thoughts = [t for t in self.thoughts if t.type == ThoughtType.ANALYSIS]
        
        for analysis in analysis_thoughts:
            hypothesis = await self._add_thought(
                ThoughtType.HYPOTHESIS,
                f"Based on {analysis.content}, hypothesis: {self._generate_hypothesis(analysis, context)}",
                context
            )
            hypotheses.append(hypothesis)
        
        return hypotheses
    
    async def _verify_hypotheses(
        self,
        hypotheses: List[Thought],
        context: Dict[str, Any]
    ) -> None:
        """Verify generated hypotheses."""
        for hypothesis in hypotheses:
            await self._add_thought(
                ThoughtType.VERIFICATION,
                f"Verifying {hypothesis.content}: {self._verify_hypothesis(hypothesis, context)}",
                context
            )
    
    async def _draw_conclusion(
        self,
        context: Dict[str, Any]
    ) -> Thought:
        """Draw conclusion from verified hypotheses."""
        verified_thoughts = [t for t in self.thoughts if t.type == ThoughtType.VERIFICATION]
        
        conclusion_content = self._synthesize_conclusion(verified_thoughts, context)
        
        return await self._add_thought(
            ThoughtType.CONCLUSION,
            conclusion_content,
            context
        )
    
    async def _reflect_and_refine(
        self,
        context: Dict[str, Any]
    ) -> None:
        """Reflect on the reasoning chain and refine if needed."""
        # Add reflection thought
        reflection = await self._add_thought(
            ThoughtType.REFLECTION,
            self._generate_reflection(self.thoughts, context),
            context
        )
        
        # Add refinement if needed
        if reflection.confidence < self.min_confidence:
            await self._add_thought(
                ThoughtType.REFINEMENT,
                self._generate_refinement(reflection, context),
                context
            )
            
            self.performance_metrics['refinement_count'] += 1
    
    def _calculate_confidence(
        self,
        content: str,
        context: Dict[str, Any]
    ) -> float:
        """Calculate confidence score for a thought."""
        # Base confidence
        confidence = 0.5
        
        # Adjust based on content length and complexity
        words = content.split()
        if len(words) > 50:
            confidence += 0.1
        if len(words) > 100:
            confidence += 0.1
        
        # Adjust based on evidence
        evidence = self._gather_evidence(content, context)
        confidence += min(0.3, len(evidence) * 0.1)
        
        return min(1.0, confidence)
    
    def _gather_evidence(
        self,
        content: str,
        context: Dict[str, Any]
    ) -> List[str]:
        """Gather evidence supporting the thought."""
        evidence = []
        
        # Extract from context
        if 'evidence' in context:
            evidence.extend(context['evidence'])
        
        # Extract from previous thoughts
        for thought in self.thoughts:
            if any(term in thought.content.lower() for term in content.lower().split()):
                evidence.append(f"Supported by previous thought: {thought.content}")
        
        return evidence
    
    def _generate_alternatives(
        self,
        content: str,
        context: Dict[str, Any]
    ) -> List[str]:
        """Generate alternative perspectives."""
        alternatives = []
        
        # Generate opposites
        words = content.lower().split()
        opposites = {
            'increase': 'decrease',
            'high': 'low',
            'good': 'bad',
            'positive': 'negative'
        }
        
        for word in words:
            if word in opposites:
                alt = content.replace(word, opposites[word])
                alternatives.append(f"Alternative: {alt}")
        
        return alternatives
    
    def _determine_next_steps(
        self,
        type: ThoughtType,
        context: Dict[str, Any]
    ) -> List[str]:
        """Determine possible next steps."""
        steps = []
        
        if type == ThoughtType.OBSERVATION:
            steps.extend([
                "Analyze key components",
                "Identify patterns",
                "Consider context"
            ])
        elif type == ThoughtType.ANALYSIS:
            steps.extend([
                "Generate hypotheses",
                "Look for correlations",
                "Consider alternatives"
            ])
        elif type == ThoughtType.HYPOTHESIS:
            steps.extend([
                "Verify hypothesis",
                "Gather evidence",
                "Test assumptions"
            ])
        elif type == ThoughtType.VERIFICATION:
            steps.extend([
                "Draw conclusions",
                "Consider implications",
                "Plan actions"
            ])
        
        return steps
    
    def _extract_metadata(
        self,
        content: str,
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Extract metadata from thought content."""
        return {
            'length': len(content),
            'complexity': len(content.split()),
            'context_keys': list(context.keys()),
            'timestamp': datetime.now().isoformat()
        }
    
    def _extract_components(self, query: str) -> List[str]:
        """Extract key components from query."""
        # Simple word-based extraction
        # Could be enhanced with NLP
        return [w.strip() for w in query.split() if len(w.strip()) > 3]
    
    def _analyze_component(
        self,
        component: str,
        context: Dict[str, Any]
    ) -> str:
        """Analyze a single component."""
        return f"Component {component} analysis based on context"
    
    def _generate_hypothesis(
        self,
        analysis: Thought,
        context: Dict[str, Any]
    ) -> str:
        """Generate hypothesis from analysis."""
        return f"Hypothesis generated from {analysis.content}"
    
    def _verify_hypothesis(
        self,
        hypothesis: Thought,
        context: Dict[str, Any]
    ) -> str:
        """Verify a hypothesis."""
        return f"Verification of {hypothesis.content}"
    
    def _synthesize_conclusion(
        self,
        verified_thoughts: List[Thought],
        context: Dict[str, Any]
    ) -> str:
        """Synthesize conclusion from verified thoughts."""
        return "Conclusion based on verified thoughts: " + \
               ", ".join(t.content for t in verified_thoughts)
    
    def _generate_reflection(
        self,
        thoughts: List[Thought],
        context: Dict[str, Any]
    ) -> str:
        """Generate reflection on thought chain."""
        return f"Reflection on {len(thoughts)} thoughts in chain"
    
    def _generate_refinement(
        self,
        reflection: Thought,
        context: Dict[str, Any]
    ) -> str:
        """Generate refinement based on reflection."""
        return f"Refinement based on {reflection.content}"
    
    def _update_metrics(self) -> None:
        """Update performance metrics."""
        if self.thoughts:
            self.performance_metrics.update({
                'avg_confidence': sum(t.confidence for t in self.thoughts) / len(self.thoughts),
                'chain_length': len(self.thoughts),
                'parallel_paths': len([t for t in self.thoughts if t.alternatives])
            })