Spaces:
Running
on
Zero
Running
on
Zero
import comfy.samplers | |
import comfy.sample | |
from comfy.k_diffusion import sampling as k_diffusion_sampling | |
import latent_preview | |
import torch | |
import comfy.utils | |
import node_helpers | |
class BasicScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"scheduler": (comfy.samplers.SCHEDULER_NAMES, ), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, model, scheduler, steps, denoise): | |
total_steps = steps | |
if denoise < 1.0: | |
if denoise <= 0.0: | |
return (torch.FloatTensor([]),) | |
total_steps = int(steps/denoise) | |
sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu() | |
sigmas = sigmas[-(steps + 1):] | |
return (sigmas, ) | |
class KarrasScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"rho": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, steps, sigma_max, sigma_min, rho): | |
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) | |
return (sigmas, ) | |
class ExponentialScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, steps, sigma_max, sigma_min): | |
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max) | |
return (sigmas, ) | |
class PolyexponentialScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, steps, sigma_max, sigma_min, rho): | |
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho) | |
return (sigmas, ) | |
class LaplaceScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"mu": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step":0.1, "round": False}), | |
"beta": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step":0.1, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, steps, sigma_max, sigma_min, mu, beta): | |
sigmas = k_diffusion_sampling.get_sigmas_laplace(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, mu=mu, beta=beta) | |
return (sigmas, ) | |
class SDTurboScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 1, "min": 1, "max": 10}), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, model, steps, denoise): | |
start_step = 10 - int(10 * denoise) | |
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps] | |
sigmas = model.get_model_object("model_sampling").sigma(timesteps) | |
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) | |
return (sigmas, ) | |
class BetaSamplingScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"alpha": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 50.0, "step":0.01, "round": False}), | |
"beta": ("FLOAT", {"default": 0.6, "min": 0.0, "max": 50.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, model, steps, alpha, beta): | |
sigmas = comfy.samplers.beta_scheduler(model.get_model_object("model_sampling"), steps, alpha=alpha, beta=beta) | |
return (sigmas, ) | |
class VPScheduler: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"beta_d": ("FLOAT", {"default": 19.9, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), #TODO: fix default values | |
"beta_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}), | |
"eps_s": ("FLOAT", {"default": 0.001, "min": 0.0, "max": 1.0, "step":0.0001, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/schedulers" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, steps, beta_d, beta_min, eps_s): | |
sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s) | |
return (sigmas, ) | |
class SplitSigmas: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"sigmas": ("SIGMAS", ), | |
"step": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS","SIGMAS") | |
RETURN_NAMES = ("high_sigmas", "low_sigmas") | |
CATEGORY = "sampling/custom_sampling/sigmas" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, sigmas, step): | |
sigmas1 = sigmas[:step + 1] | |
sigmas2 = sigmas[step:] | |
return (sigmas1, sigmas2) | |
class SplitSigmasDenoise: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"sigmas": ("SIGMAS", ), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS","SIGMAS") | |
RETURN_NAMES = ("high_sigmas", "low_sigmas") | |
CATEGORY = "sampling/custom_sampling/sigmas" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, sigmas, denoise): | |
steps = max(sigmas.shape[-1] - 1, 0) | |
total_steps = round(steps * denoise) | |
sigmas1 = sigmas[:-(total_steps)] | |
sigmas2 = sigmas[-(total_steps + 1):] | |
return (sigmas1, sigmas2) | |
class FlipSigmas: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"sigmas": ("SIGMAS", ), | |
} | |
} | |
RETURN_TYPES = ("SIGMAS",) | |
CATEGORY = "sampling/custom_sampling/sigmas" | |
FUNCTION = "get_sigmas" | |
def get_sigmas(self, sigmas): | |
if len(sigmas) == 0: | |
return (sigmas,) | |
sigmas = sigmas.flip(0) | |
if sigmas[0] == 0: | |
sigmas[0] = 0.0001 | |
return (sigmas,) | |
class KSamplerSelect: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"sampler_name": (comfy.samplers.SAMPLER_NAMES, ), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, sampler_name): | |
sampler = comfy.samplers.sampler_object(sampler_name) | |
return (sampler, ) | |
class SamplerDPMPP_3M_SDE: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"noise_device": (['gpu', 'cpu'], ), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, eta, s_noise, noise_device): | |
if noise_device == 'cpu': | |
sampler_name = "dpmpp_3m_sde" | |
else: | |
sampler_name = "dpmpp_3m_sde_gpu" | |
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise}) | |
return (sampler, ) | |
class SamplerDPMPP_2M_SDE: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"solver_type": (['midpoint', 'heun'], ), | |
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"noise_device": (['gpu', 'cpu'], ), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, solver_type, eta, s_noise, noise_device): | |
if noise_device == 'cpu': | |
sampler_name = "dpmpp_2m_sde" | |
else: | |
sampler_name = "dpmpp_2m_sde_gpu" | |
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type}) | |
return (sampler, ) | |
class SamplerDPMPP_SDE: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"r": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"noise_device": (['gpu', 'cpu'], ), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, eta, s_noise, r, noise_device): | |
if noise_device == 'cpu': | |
sampler_name = "dpmpp_sde" | |
else: | |
sampler_name = "dpmpp_sde_gpu" | |
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r}) | |
return (sampler, ) | |
class SamplerDPMPP_2S_Ancestral: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, eta, s_noise): | |
sampler = comfy.samplers.ksampler("dpmpp_2s_ancestral", {"eta": eta, "s_noise": s_noise}) | |
return (sampler, ) | |
class SamplerEulerAncestral: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, eta, s_noise): | |
sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise}) | |
return (sampler, ) | |
class SamplerEulerAncestralCFGPP: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}), | |
}} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, eta, s_noise): | |
sampler = comfy.samplers.ksampler( | |
"euler_ancestral_cfg_pp", | |
{"eta": eta, "s_noise": s_noise}) | |
return (sampler, ) | |
class SamplerLMS: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"order": ("INT", {"default": 4, "min": 1, "max": 100}), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, order): | |
sampler = comfy.samplers.ksampler("lms", {"order": order}) | |
return (sampler, ) | |
class SamplerDPMAdaptative: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"order": ("INT", {"default": 3, "min": 2, "max": 3}), | |
"rtol": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"atol": ("FLOAT", {"default": 0.0078, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"h_init": ("FLOAT", {"default": 0.05, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"pcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"icoeff": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"dcoeff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"accept_safety": ("FLOAT", {"default": 0.81, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"eta": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}), | |
} | |
} | |
RETURN_TYPES = ("SAMPLER",) | |
CATEGORY = "sampling/custom_sampling/samplers" | |
FUNCTION = "get_sampler" | |
def get_sampler(self, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise): | |
sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff, | |
"icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta, | |
"s_noise":s_noise }) | |
return (sampler, ) | |
class Noise_EmptyNoise: | |
def __init__(self): | |
self.seed = 0 | |
def generate_noise(self, input_latent): | |
latent_image = input_latent["samples"] | |
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") | |
class Noise_RandomNoise: | |
def __init__(self, seed): | |
self.seed = seed | |
def generate_noise(self, input_latent): | |
latent_image = input_latent["samples"] | |
batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None | |
return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds) | |
class SamplerCustom: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"add_noise": ("BOOLEAN", {"default": True}), | |
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"sampler": ("SAMPLER", ), | |
"sigmas": ("SIGMAS", ), | |
"latent_image": ("LATENT", ), | |
} | |
} | |
RETURN_TYPES = ("LATENT","LATENT") | |
RETURN_NAMES = ("output", "denoised_output") | |
FUNCTION = "sample" | |
CATEGORY = "sampling/custom_sampling" | |
def sample(self, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image): | |
latent = latent_image | |
latent_image = latent["samples"] | |
latent = latent.copy() | |
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) | |
latent["samples"] = latent_image | |
if not add_noise: | |
noise = Noise_EmptyNoise().generate_noise(latent) | |
else: | |
noise = Noise_RandomNoise(noise_seed).generate_noise(latent) | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = latent["noise_mask"] | |
x0_output = {} | |
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output) | |
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED | |
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed) | |
out = latent.copy() | |
out["samples"] = samples | |
if "x0" in x0_output: | |
out_denoised = latent.copy() | |
out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu()) | |
else: | |
out_denoised = out | |
return (out, out_denoised) | |
class Guider_Basic(comfy.samplers.CFGGuider): | |
def set_conds(self, positive): | |
self.inner_set_conds({"positive": positive}) | |
class BasicGuider: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"conditioning": ("CONDITIONING", ), | |
} | |
} | |
RETURN_TYPES = ("GUIDER",) | |
FUNCTION = "get_guider" | |
CATEGORY = "sampling/custom_sampling/guiders" | |
def get_guider(self, model, conditioning): | |
guider = Guider_Basic(model) | |
guider.set_conds(conditioning) | |
return (guider,) | |
class CFGGuider: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("GUIDER",) | |
FUNCTION = "get_guider" | |
CATEGORY = "sampling/custom_sampling/guiders" | |
def get_guider(self, model, positive, negative, cfg): | |
guider = comfy.samplers.CFGGuider(model) | |
guider.set_conds(positive, negative) | |
guider.set_cfg(cfg) | |
return (guider,) | |
class Guider_DualCFG(comfy.samplers.CFGGuider): | |
def set_cfg(self, cfg1, cfg2): | |
self.cfg1 = cfg1 | |
self.cfg2 = cfg2 | |
def set_conds(self, positive, middle, negative): | |
middle = node_helpers.conditioning_set_values(middle, {"prompt_type": "negative"}) | |
self.inner_set_conds({"positive": positive, "middle": middle, "negative": negative}) | |
def predict_noise(self, x, timestep, model_options={}, seed=None): | |
negative_cond = self.conds.get("negative", None) | |
middle_cond = self.conds.get("middle", None) | |
out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, self.conds.get("positive", None)], x, timestep, model_options) | |
return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options, cond=middle_cond, uncond=negative_cond) + (out[2] - out[1]) * self.cfg1 | |
class DualCFGGuider: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"cond1": ("CONDITIONING", ), | |
"cond2": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"cfg_conds": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
"cfg_cond2_negative": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("GUIDER",) | |
FUNCTION = "get_guider" | |
CATEGORY = "sampling/custom_sampling/guiders" | |
def get_guider(self, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative): | |
guider = Guider_DualCFG(model) | |
guider.set_conds(cond1, cond2, negative) | |
guider.set_cfg(cfg_conds, cfg_cond2_negative) | |
return (guider,) | |
class DisableNoise: | |
def INPUT_TYPES(s): | |
return {"required":{ | |
} | |
} | |
RETURN_TYPES = ("NOISE",) | |
FUNCTION = "get_noise" | |
CATEGORY = "sampling/custom_sampling/noise" | |
def get_noise(self): | |
return (Noise_EmptyNoise(),) | |
class RandomNoise(DisableNoise): | |
def INPUT_TYPES(s): | |
return {"required":{ | |
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
} | |
} | |
def get_noise(self, noise_seed): | |
return (Noise_RandomNoise(noise_seed),) | |
class SamplerCustomAdvanced: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"noise": ("NOISE", ), | |
"guider": ("GUIDER", ), | |
"sampler": ("SAMPLER", ), | |
"sigmas": ("SIGMAS", ), | |
"latent_image": ("LATENT", ), | |
} | |
} | |
RETURN_TYPES = ("LATENT","LATENT") | |
RETURN_NAMES = ("output", "denoised_output") | |
FUNCTION = "sample" | |
CATEGORY = "sampling/custom_sampling" | |
def sample(self, noise, guider, sampler, sigmas, latent_image): | |
latent = latent_image | |
latent_image = latent["samples"] | |
latent = latent.copy() | |
latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image) | |
latent["samples"] = latent_image | |
noise_mask = None | |
if "noise_mask" in latent: | |
noise_mask = latent["noise_mask"] | |
x0_output = {} | |
callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output) | |
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED | |
samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed) | |
samples = samples.to(comfy.model_management.intermediate_device()) | |
out = latent.copy() | |
out["samples"] = samples | |
if "x0" in x0_output: | |
out_denoised = latent.copy() | |
out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu()) | |
else: | |
out_denoised = out | |
return (out, out_denoised) | |
class AddNoise: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"noise": ("NOISE", ), | |
"sigmas": ("SIGMAS", ), | |
"latent_image": ("LATENT", ), | |
} | |
} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "add_noise" | |
CATEGORY = "_for_testing/custom_sampling/noise" | |
def add_noise(self, model, noise, sigmas, latent_image): | |
if len(sigmas) == 0: | |
return latent_image | |
latent = latent_image | |
latent_image = latent["samples"] | |
noisy = noise.generate_noise(latent) | |
model_sampling = model.get_model_object("model_sampling") | |
process_latent_out = model.get_model_object("process_latent_out") | |
process_latent_in = model.get_model_object("process_latent_in") | |
if len(sigmas) > 1: | |
scale = torch.abs(sigmas[0] - sigmas[-1]) | |
else: | |
scale = sigmas[0] | |
if torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image. | |
latent_image = process_latent_in(latent_image) | |
noisy = model_sampling.noise_scaling(scale, noisy, latent_image) | |
noisy = process_latent_out(noisy) | |
noisy = torch.nan_to_num(noisy, nan=0.0, posinf=0.0, neginf=0.0) | |
out = latent.copy() | |
out["samples"] = noisy | |
return (out,) | |
NODE_CLASS_MAPPINGS = { | |
"SamplerCustom": SamplerCustom, | |
"BasicScheduler": BasicScheduler, | |
"KarrasScheduler": KarrasScheduler, | |
"ExponentialScheduler": ExponentialScheduler, | |
"PolyexponentialScheduler": PolyexponentialScheduler, | |
"LaplaceScheduler": LaplaceScheduler, | |
"VPScheduler": VPScheduler, | |
"BetaSamplingScheduler": BetaSamplingScheduler, | |
"SDTurboScheduler": SDTurboScheduler, | |
"KSamplerSelect": KSamplerSelect, | |
"SamplerEulerAncestral": SamplerEulerAncestral, | |
"SamplerEulerAncestralCFGPP": SamplerEulerAncestralCFGPP, | |
"SamplerLMS": SamplerLMS, | |
"SamplerDPMPP_3M_SDE": SamplerDPMPP_3M_SDE, | |
"SamplerDPMPP_2M_SDE": SamplerDPMPP_2M_SDE, | |
"SamplerDPMPP_SDE": SamplerDPMPP_SDE, | |
"SamplerDPMPP_2S_Ancestral": SamplerDPMPP_2S_Ancestral, | |
"SamplerDPMAdaptative": SamplerDPMAdaptative, | |
"SplitSigmas": SplitSigmas, | |
"SplitSigmasDenoise": SplitSigmasDenoise, | |
"FlipSigmas": FlipSigmas, | |
"CFGGuider": CFGGuider, | |
"DualCFGGuider": DualCFGGuider, | |
"BasicGuider": BasicGuider, | |
"RandomNoise": RandomNoise, | |
"DisableNoise": DisableNoise, | |
"AddNoise": AddNoise, | |
"SamplerCustomAdvanced": SamplerCustomAdvanced, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"SamplerEulerAncestralCFGPP": "SamplerEulerAncestralCFG++", | |
} | |