File size: 6,404 Bytes
4b4a081
 
 
 
 
7f6411d
4b4a081
 
 
 
ad377b6
4b4a081
1fbd36b
4b4a081
 
 
 
 
 
 
 
 
 
 
47fa86f
4b4a081
 
 
3f36526
4b4a081
 
fb1f39b
d4eab55
fb1f39b
ce7a0ae
fb1f39b
d4eab55
 
fb1f39b
 
 
 
 
 
 
 
 
 
 
ce7a0ae
fb1f39b
 
 
d4eab55
7f6411d
a401019
 
fb1f39b
a401019
fb1f39b
 
 
 
 
 
d4eab55
4b4a081
 
 
 
 
 
 
 
 
 
 
 
 
d4eab55
4b4a081
 
 
 
 
 
 
d4eab55
 
4b4a081
 
164f321
72d471a
fb1f39b
4b4a081
 
 
fb1f39b
4b4a081
fb1f39b
 
 
4b4a081
 
 
 
 
a91a8c1
 
 
4b4a081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5525f3c
4b4a081
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
from openai import OpenAI
import os
import json
from datetime import datetime
from zoneinfo import ZoneInfo
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler


openai_api_key = os.getenv('api_key')
model_name = "gpt-4o-mini"

client = OpenAI(
    api_key=openai_api_key,
)

# Define the file where to save the data. Use UUID to make sure not to overwrite existing data from a previous run.
feedback_file = Path("user_feedback/") / f"data_{uuid.uuid4()}.json"
feedback_folder = feedback_file.parent

# Schedule regular uploads. Remote repo and local folder are created if they don't already exist.
scheduler = CommitScheduler(
    repo_id="misdelivery/demo-test-data",  # Replace with your actual repo ID
    repo_type="dataset",
    folder_path=feedback_folder,
    path_in_repo="data",
    every=1,  # Upload every 1 minutes
)

def save_or_update_conversation(conversation_id, message, response, message_index, liked=None):
    """
    Save or update conversation data in a JSON Lines file.
    If the entry already exists (same id and message_index), update the 'label' field.
    Otherwise, append a new entry.
    """
    with scheduler.lock:
        # Read existing data
        data = []
        if feedback_file.exists():
            with feedback_file.open("r") as f:
                data = [json.loads(line) for line in f if line.strip()]

        # Find if an entry with the same id and message_index exists
        entry_index = next((i for i, entry in enumerate(data) if entry['id'] == conversation_id and entry['message_index'] == message_index), None)

        if entry_index is not None:
            # Update existing entry
            data[entry_index]['label'] = liked
        else:
            # Append new entry
            data.append({
                "id": conversation_id,
                "timestamp": datetime.now(ZoneInfo("Asia/Tokyo")).isoformat(),
                "prompt": message,
                "completion": response,
                "message_index": message_index,
                "label": liked
            })

        # Write updated data back to file
        with feedback_file.open("w") as f:
            for entry in data:
                f.write(json.dumps(entry) + "\n")

def respond(message, history, conversation_id, max_tokens, temperature, top_p):
    messages = [
        {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}
    ]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""
    for chunk in client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        if chunk.choices[0].delta.content is not None:
            response += chunk.choices[0].delta.content
        yield response
    
    # Save conversation after the full response is generated
    message_index = len(history)
    save_or_update_conversation(conversation_id, message, response, message_index)

def vote(data: gr.LikeData, history, conversation_id):
    """
    Update user feedback (like/dislike) in the local file.
    """
    message_index = data.index[0]
    liked = data.liked
    save_or_update_conversation(conversation_id, None, None, message_index, liked)

def create_conversation_id():
    return str(uuid.uuid4())

description = """
### gpt400-miniとの会話(期間限定での公開)
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開する**ため、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- 公開中のデータセット https://huggingface.co./datasets/misdelivery/demo-test-data 
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""

HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- GPUサーバーが不安定なので、応答しないことがあるかもしれません。
- この会話データはHugging Face Hubのデータセットに定期的にアップロードされます。"""

def run():
    conversation_id = gr.State(create_conversation_id)
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        scale=1,
        show_copy_button=True,
        height="70%",
        layout="panel",
    )
    with gr.Blocks(fill_height=True) as demo:
        gr.Markdown(HEADER)
        chat_interface = gr.ChatInterface(
            fn=respond,
            stop_btn="Stop Generation",
            cache_examples=False,
            multimodal=False,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(
                label="Parameters", open=False, render=False
            ),
            additional_inputs=[
                conversation_id,
                gr.Slider(
                    minimum=1,
                    maximum=4096,
                    step=1,
                    value=1024,
                    label="Max tokens",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.3,
                    label="Temperature",
                    visible=True,
                    render=False,
                ),
                gr.Slider(
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="Top-p",
                    visible=True,
                    render=False,
                ),
            ],
            analytics_enabled=False,
        )
        chatbot.like(vote, [chatbot, conversation_id], None)
        gr.Markdown(FOOTER)
    demo.queue(max_size=256, api_open=True)
    demo.launch(share=True, quiet=True)

if __name__ == "__main__":
    run()