Spaces:
Sleeping
Sleeping
File size: 6,404 Bytes
4b4a081 7f6411d 4b4a081 ad377b6 4b4a081 1fbd36b 4b4a081 47fa86f 4b4a081 3f36526 4b4a081 fb1f39b d4eab55 fb1f39b ce7a0ae fb1f39b d4eab55 fb1f39b ce7a0ae fb1f39b d4eab55 7f6411d a401019 fb1f39b a401019 fb1f39b d4eab55 4b4a081 d4eab55 4b4a081 d4eab55 4b4a081 164f321 72d471a fb1f39b 4b4a081 fb1f39b 4b4a081 fb1f39b 4b4a081 a91a8c1 4b4a081 5525f3c 4b4a081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
from openai import OpenAI
import os
import json
from datetime import datetime
from zoneinfo import ZoneInfo
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler
openai_api_key = os.getenv('api_key')
model_name = "gpt-4o-mini"
client = OpenAI(
api_key=openai_api_key,
)
# Define the file where to save the data. Use UUID to make sure not to overwrite existing data from a previous run.
feedback_file = Path("user_feedback/") / f"data_{uuid.uuid4()}.json"
feedback_folder = feedback_file.parent
# Schedule regular uploads. Remote repo and local folder are created if they don't already exist.
scheduler = CommitScheduler(
repo_id="misdelivery/demo-test-data", # Replace with your actual repo ID
repo_type="dataset",
folder_path=feedback_folder,
path_in_repo="data",
every=1, # Upload every 1 minutes
)
def save_or_update_conversation(conversation_id, message, response, message_index, liked=None):
"""
Save or update conversation data in a JSON Lines file.
If the entry already exists (same id and message_index), update the 'label' field.
Otherwise, append a new entry.
"""
with scheduler.lock:
# Read existing data
data = []
if feedback_file.exists():
with feedback_file.open("r") as f:
data = [json.loads(line) for line in f if line.strip()]
# Find if an entry with the same id and message_index exists
entry_index = next((i for i, entry in enumerate(data) if entry['id'] == conversation_id and entry['message_index'] == message_index), None)
if entry_index is not None:
# Update existing entry
data[entry_index]['label'] = liked
else:
# Append new entry
data.append({
"id": conversation_id,
"timestamp": datetime.now(ZoneInfo("Asia/Tokyo")).isoformat(),
"prompt": message,
"completion": response,
"message_index": message_index,
"label": liked
})
# Write updated data back to file
with feedback_file.open("w") as f:
for entry in data:
f.write(json.dumps(entry) + "\n")
def respond(message, history, conversation_id, max_tokens, temperature, top_p):
messages = [
{"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}
]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for chunk in client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if chunk.choices[0].delta.content is not None:
response += chunk.choices[0].delta.content
yield response
# Save conversation after the full response is generated
message_index = len(history)
save_or_update_conversation(conversation_id, message, response, message_index)
def vote(data: gr.LikeData, history, conversation_id):
"""
Update user feedback (like/dislike) in the local file.
"""
message_index = data.index[0]
liked = data.liked
save_or_update_conversation(conversation_id, None, None, message_index, liked)
def create_conversation_id():
return str(uuid.uuid4())
description = """
### gpt400-miniとの会話(期間限定での公開)
- 人工知能開発のため、原則として**このChatBotの入出力データは全て著作権フリー(CC0)で公開する**ため、ご注意ください。著作物、個人情報、機密情報、誹謗中傷などのデータを入力しないでください。
- 公開中のデータセット https://huggingface.co./datasets/misdelivery/demo-test-data
- **上記の条件に同意する場合のみ**、以下のChatbotを利用してください。
"""
HEADER = description
FOOTER = """### 注意
- コンテクスト長が4096までなので、あまり会話が長くなると、エラーで停止します。ページを再読み込みしてください。
- GPUサーバーが不安定なので、応答しないことがあるかもしれません。
- この会話データはHugging Face Hubのデータセットに定期的にアップロードされます。"""
def run():
conversation_id = gr.State(create_conversation_id)
chatbot = gr.Chatbot(
elem_id="chatbot",
scale=1,
show_copy_button=True,
height="70%",
layout="panel",
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown(HEADER)
chat_interface = gr.ChatInterface(
fn=respond,
stop_btn="Stop Generation",
cache_examples=False,
multimodal=False,
chatbot=chatbot,
additional_inputs_accordion=gr.Accordion(
label="Parameters", open=False, render=False
),
additional_inputs=[
conversation_id,
gr.Slider(
minimum=1,
maximum=4096,
step=1,
value=1024,
label="Max tokens",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
visible=True,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=1.0,
label="Top-p",
visible=True,
render=False,
),
],
analytics_enabled=False,
)
chatbot.like(vote, [chatbot, conversation_id], None)
gr.Markdown(FOOTER)
demo.queue(max_size=256, api_open=True)
demo.launch(share=True, quiet=True)
if __name__ == "__main__":
run() |