uce_demo / app.py
minwoosun's picture
Add jupyter lab link
6e5cafc verified
raw
history blame
9.45 kB
import gradio as gr
import pandas as pd
import numpy as np
import umap
import json
import matplotlib.pyplot as plt
import os
# import tempfile
import scanpy as sc
# import argparse
import subprocess
import sys
# from evaluate import AnndataProcessor
# from accelerate import Accelerator
from io import BytesIO
from sklearn.linear_model import LogisticRegression
from huggingface_hub import hf_hub_download
def load_and_predict_with_classifier(x, model_path, output_path, save):
# Load the model parameters from the JSON file
with open(model_path, 'r') as f:
model_params = json.load(f)
# Reconstruct the logistic regression model
model_loaded = LogisticRegression(multi_class='multinomial', solver='lbfgs', max_iter=1000)
model_loaded.coef_ = np.array(model_params["coef"])
model_loaded.intercept_ = np.array(model_params["intercept"])
model_loaded.classes_ = np.array(model_params["classes"])
# output predictions
y_pred = model_loaded.predict(x)
# Convert the array to a Pandas DataFrame
if save:
df = pd.DataFrame(y_pred, columns=["predicted_cell_type"])
df.to_csv(output_path, index=False, header=False)
return y_pred
def main(input_file_path, species):
# Get the current working directory
current_working_directory = os.getcwd()
# Print the current working directory
print("Current Working Directory:", current_working_directory)
# clone and cd into UCE repo
os.system('git clone https://github.com/minwoosun/UCE.git')
os.chdir('/home/user/app/UCE')
# Get the current working directory
current_working_directory = os.getcwd()
# Print the current working directory
print("Current Working Directory:", current_working_directory)
# Specify the path to the directory you want to add
new_directory = "/home/user/app/UCE"
# Add the directory to the Python path
sys.path.append(new_directory)
##############
# UCE #
##############
from evaluate import AnndataProcessor
from accelerate import Accelerator
# # python eval_single_anndata.py --adata_path "./data/10k_pbmcs_proc.h5ad" --dir "./" --model_loc "minwoosun/uce-100m"
# script_name = "/home/user/app/UCE/eval_single_anndata.py"
# args = ["--adata_path", input_file_path, "--dir", "/home/user/app/UCE/", "--model_loc", "minwoosun/uce-100m"]
# command = ["python", script_name] + args
dir_path = '/home/user/app/UCE/'
model_loc = 'minwoosun/uce-100m'
print(input_file_path)
print(dir_path)
print(model_loc)
# Verify adata_path is not None
if input_file_path is None or not os.path.exists(input_file_path):
raise ValueError(f"Invalid adata_path: {input_file_path}. Please check if the file exists.")
# Construct the command
command = [
'python',
'/home/user/app/UCE/eval_single_anndata.py',
'--adata_path', input_file_path,
'--dir', dir_path,
'--model_loc', model_loc
]
# Print the command for debugging
print("Running command:", command)
print("---> RUNNING UCE")
result = subprocess.run(command, capture_output=True, text=True, check=True)
print(result.stdout)
print(result.stderr)
print("---> FINSIH UCE")
################################
# Cell-type classification #
################################
# Set output file path
file_name_with_ext = os.path.basename(input_file_path)
file_name = os.path.splitext(file_name_with_ext)[0]
pred_file = "/home/user/app/UCE/" + f"{file_name}_predictions.csv"
model_path = hf_hub_download(repo_id="minwoosun/uce-misc", filename="tabula_sapiens_v1_logistic_regression_model_weights.json")
file_name_with_ext = os.path.basename(input_file_path)
file_name = os.path.splitext(file_name_with_ext)[0]
output_file = "/home/user/app/UCE/" + f"{file_name}_uce_adata.h5ad"
adata = sc.read_h5ad(output_file)
x = adata.obsm['X_uce']
y_pred = load_and_predict_with_classifier(x, model_path, pred_file, save=True)
##############
# UMAP #
##############
UMAP = True
if (UMAP):
# # Set output file path
# file_name_with_ext = os.path.basename(input_file_path)
# file_name = os.path.splitext(file_name_with_ext)[0]
# output_file = "/home/user/app/UCE/" + f"{file_name}_uce_adata.h5ad"
# adata = sc.read_h5ad(output_file)
labels = pd.Categorical(adata.obs["cell_type"])
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, random_state=42)
embedding = reducer.fit_transform(adata.obsm["X_uce"])
plt.figure(figsize=(10, 8))
# Create the scatter plot
scatter = plt.scatter(embedding[:, 0], embedding[:, 1], c=labels.codes, cmap='Set1', s=50, alpha=0.6)
# Create a legend
handles = []
for i, cell_type in enumerate(labels.categories):
handles.append(plt.Line2D([0], [0], marker='o', color='w', label=cell_type,
markerfacecolor=plt.cm.Set1(i / len(labels.categories)), markersize=10))
plt.legend(handles=handles, title='Cell Type')
plt.title('UMAP projection of the data')
plt.xlabel('UMAP1')
plt.ylabel('UMAP2')
# Save plot to a BytesIO object
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Read the image from BytesIO object
img = plt.imread(buf, format='png')
else:
img = None
print("no image")
return img, output_file, pred_file
if __name__ == "__main__":
css = """
body {background-color: white; color: black;}
.gradio-container {background-color: white; color: black;}
.gr-file, .gr-image {background-color: #f0f0f0; color: black; border-color: black;}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(
'''
<div style="text-align:center; margin-bottom:20px;">
<span style="font-size:3em; font-weight:bold; color: black;">UCE 100M Demo 🦠</span>
</div>
<div style="text-align:center; margin-bottom:10px;">
<span style="font-size:1.5em; font-weight:bold; color: black;">Universal Cell Embeddings: Zero-Shot Cell-Type Classification in Action!</span>
</div>
<div style="text-align:center; margin-bottom:20px;">
<a href="https://github.com/minwoosun/UCE">
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block; margin-right:10px;">
</a>
<a href="https://www.biorxiv.org/content/10.1101/2023.11.28.568918v1">
<img src="https://img.shields.io/badge/bioRxiv-2023.11.28.568918-green?style=plastic" alt="Paper" style="display:inline-block; margin-right:10px;">
</a>
<a href="https://colab.research.google.com/drive/1opud0BVWr76IM8UnGgTomVggui_xC4p0?usp=sharing">
<img src="https://jupyter.org/assets/logos/rectanglelogo-greytext-orangebody-greymoons.svg" alt="JupyterLab" style="display:inline-block; margin-right:10px; width:50px; height:auto;">
</a>
</div>
<div style="text-align:left; margin-bottom:20px; color: black;">
Upload a `.h5ad` single cell gene expression file and select the species (Human/Mouse).
The demo will generate UMAP projections of the embeddings and allow you to download the embeddings for further analysis.
</div>
<div style="margin-bottom:20px; color: black;">
<ol style="list-style:none; padding-left:0;">
<li>1. Upload your `.h5ad` file</li>
<li>2. Select the species</li>
<li>3. Click "Run" to view the UMAP scatter plot</li>
<li>4. Download the UMAP coordinates</li>
</ol>
</div>
<div style="text-align:left; line-height:1.8; color: black;">
Please consider citing the following paper if you use this tool in your research:
</div>
<div style="text-align:left; line-height:1.8; color: black;">
Rosen, Y., Roohani, Y., Agarwal, A., Samotorčan, L., Tabula Sapiens Consortium, Quake, S. R., & Leskovec, J. Universal Cell Embeddings: A Foundation Model for Cell Biology. bioRxiv. https://doi.org/10.1101/2023.11.28.568918
</div>
'''
)
# Define Gradio inputs and outputs
file_input = gr.File(label="Upload a .h5ad single cell gene expression file")
species_input = gr.Dropdown(choices=["human", "mouse"], label="Select species")
run_button = gr.Button("Run")
# Arrange UMAP plot and file output side by side
with gr.Row():
image_output = gr.Image(type="numpy", label="UMAP of UCE Embeddings")
file_output = gr.File(label="Download embeddings")
pred_output = gr.File(label="Download predictions")
# Add the components and link to the function
run_button.click(
fn=main,
inputs=[file_input, species_input],
outputs=[image_output, file_output, pred_output]
)
demo.launch()