File size: 5,279 Bytes
e271901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import pandas as pd
import numpy as np
from zipfile import ZipFile
import tensorflow as tf
from tensorflow import keras
from pathlib import Path
import matplotlib.pyplot as plt
import gradio as gr
from huggingface_hub import from_pretrained_keras

# Download the actual data from http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
movielens_data_file_url = "http://files.grouplens.org/datasets/movielens/ml-latest-small.zip"
movielens_zipped_file = keras.utils.get_file("ml-latest-small.zip", movielens_data_file_url, extract=False)
keras_datasets_path = Path(movielens_zipped_file).parents[0]
movielens_dir = keras_datasets_path / "ml-latest-small"

# Only extract the data the first time the script is run.
if not movielens_dir.exists():
    with ZipFile(movielens_zipped_file, "r") as zip:
        # Extract files
        print("Extracting all the files now...")
        zip.extractall(path=keras_datasets_path)
        print("Done!")

# Get the ratings file
ratings_file = movielens_dir / "ratings.csv"
df = pd.read_csv(ratings_file)

# Make the encodings for users
user_ids = df["userId"].unique().tolist()
user2user_encoded = {x: i for i, x in enumerate(user_ids)}
user_encoded2user = {i: x for i, x in enumerate(user_ids)}
df["user"] = df["userId"].map(user2user_encoded)
num_users = len(user2user_encoded)

# Make the encodings for movies
movie_ids = df["movieId"].unique().tolist()
movie2movie_encoded = {x: i for i, x in enumerate(movie_ids)}
movie_encoded2movie = {i: x for i, x in enumerate(movie_ids)}
df["movie"] = df["movieId"].map(movie2movie_encoded)
num_movies = len(movie_encoded2movie)

# Set ratings type
df["rating"] = df["rating"].values.astype(np.float32)
# min and max ratings will be used to normalize the ratings later
# min_rating = min(df["rating"])
# max_rating = max(df["rating"])

# Load model
model = from_pretrained_keras('mindwrapped/collaborative-filtering-movielens')
movie_df = pd.read_csv(movielens_dir / "movies.csv")


def update_user(id):
  return get_top_rated_movies_from_user(id), get_recommendations(id)
  

def get_top_rated_movies_from_user(id):
  decoded_id = user_encoded2user.get(id)
  
  # Get the top rated movies by this user
  movies_watched_by_user = df[df.userId == decoded_id]
  top_movies_user = (
      movies_watched_by_user.sort_values(by="rating", ascending=False)
      .head(5)
      .movieId.values
  )
  movie_df_rows = movie_df[movie_df["movieId"].isin(top_movies_user)]
  movie_df_rows = movie_df_rows.drop('movieId', axis=1)
  return movie_df_rows


def random_user():
  return update_user(np.random.randint(0, num_users-1))


def get_recommendations(id):
  decoded_id = user_encoded2user.get(id)
  
  # Get the top 10 recommended movies for this user
  movies_watched_by_user = df[df.userId == decoded_id]
  movies_not_watched = movie_df[
      ~movie_df["movieId"].isin(movies_watched_by_user.movieId.values)
  ]["movieId"]
  movies_not_watched = list(
      set(movies_not_watched).intersection(set(movie2movie_encoded.keys()))
  )
  movies_not_watched = [[movie2movie_encoded.get(x)] for x in movies_not_watched]

  # Encoded user id
  encoded_id = id

  # Create data [[user_id, movie_id],...]
  user_movie_array = np.hstack(
      ([[encoded_id]] * len(movies_not_watched), movies_not_watched)
  )

  # Predict ratings for movies not watched
  ratings = model.predict(user_movie_array).flatten()

  # Get indices of top ten movies
  top_ratings_indices = ratings.argsort()[-10:][::-1]

  # Decode each movie
  recommended_movie_ids = [
      movie_encoded2movie.get(movies_not_watched[x][0]) for x in top_ratings_indices
  ]
  recommended_movies = movie_df[movie_df["movieId"].isin(recommended_movie_ids)]
  recommended_movies = recommended_movies.drop('movieId', axis=1)

  return recommended_movies

demo = gr.Blocks()

with demo:
  gr.Markdown("""
  <div>
  <h1 style='text-align: center'>Movie Recommender</h1>
  Collaborative Filtering is used to predict the top 10 recommended movies for a particular user from the dataset based on that user and previous movies they have rated.
  </div>
  """)
    
  with gr.Box():
    gr.Markdown(
    """
    ### Input
    #### Select a user to get recommendations for.
    """)

    inp1 = gr.Slider(0, num_users-1, value=0, label='User')
    # btn1 = gr.Button('Random User')

    # top_rated_from_user = get_top_rated_from_user(0)
    gr.Markdown(
    """
    <br>
    """)
    gr.Markdown(
    """
    #### Movies with the Highest Ratings from this user
    """)
    df1 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)

  with gr.Box():
    # recommendations = get_recommendations(0)
    gr.Markdown(
    """
    ### Output
    #### Top 10 movie recommendations
    """)
    df2 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)

  gr.Markdown("""
  <p style='text-align: center'>
      <a href='https://keras.io/examples/structured_data/collaborative_filtering_movielens/' target='_blank' style='text-decoration: underline'>Keras Example by Siddhartha Banerjee</a>
      <br>
      Space by Scott Krstyen (mindwrapped)
      </p>
  """)
  
  
  inp1.change(fn=update_user,
              inputs=inp1,
              outputs=[df1, df2])
  

demo.launch(debug=True)