qwen-7b-chat / app.py
ffreemt
Update removal of append_history=False
7564484
"""
Run qwen 7b chat.
transformers 4.31.0
import torch
torch.cuda.empty_cache()
model.chat(
tokenizer: transformers.tokenization_utils.PreTrainedTokenizer,
query: str,
history: Optional[List[Tuple[str, str]]],
system: str = 'You are a helpful assistant.',
append_history: bool = True,
stream: Optional[bool] = <object object at 0x7f905797ec20>,
stop_words_ids: Optional[List[List[int]]] = None,
**kwargs) -> Tuple[str, List[Tuple[str, str]]]
)
model.generation_config
GenerationConfig {
"chat_format": "chatml",
"do_sample": true,
"eos_token_id": 151643,
"max_new_tokens": 512,
"max_window_size": 6144,
"pad_token_id": 151643,
"top_k": 0,
"top_p": 0.5,
"transformers_version": "4.31.0",
"trust_remote_code": true
}
"""
# pylint: disable=line-too-long, invalid-name, no-member, redefined-outer-name, missing-function-docstring, missing-class-docstring, broad-except,
from run_cmd import run_cmd # noqa
# autodl with cuda12 NVIDIA-SMI appears
# 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0
# no fix needed
# clumsy fix for hf overwrite libbitsandbytes_cpu.so with libbitsandbytes_cuda118.so
run_cmd(
"cd /home/user/.pyenv/versions/3.10.13/lib/python3.10/site-packages/bitsandbytes; cp libbitsandbytes_cuda118.so libbitsandbytes_cpu.so"
) # noqa
import gc
import os
import subprocess as sp
import sys
import time
from collections import deque
from dataclasses import asdict, dataclass
from textwrap import dedent
from types import SimpleNamespace
from typing import List, Optional
import gradio as gr
import rich
import torch
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from example_list import css, example_list
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
if True:
run_cmd(
"ls -rtl /home/user/.pyenv/versions/3.10.13/lib/python3.10/site-packages/bitsandbytes"
)
logger.info("lsb_release -a")
ret = sp.run("lsb_release -a", capture_output=1, check=0, shell=1, encoding="utf8")
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
logger.info("nvidia-smi")
ret = sp.run("nvidia-smi", capture_output=1, check=0, shell=1, encoding="utf8")
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
# raise SystemExit("Interrupt by intentioin")
if not torch.cuda.is_available():
raise gr.Error("torch.cuda.is_available() is False, cant continue...")
model_name = "tangger/Qwen-7B-Chat" # try
model_name = "Qwen/Qwen-7B-Chat" # gone!
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
n_gpus = torch.cuda.device_count()
try:
_ = f"{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB"
except AssertionError:
_ = 0
max_memory = {i: _ for i in range(n_gpus)}
del sys
# logger.remove() # to turn on trace
# logger.add(sys.stderr, level="TRACE")
# logger.trace(f"{chat_history=}")
def gen_model(model_name: str):
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
# device_map="auto",
device_map={"": 0},
# load_in_4bit=True,
load_in_8bit=True,
max_memory=max_memory,
fp16=True,
torch_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = model.eval()
model.generation_config = GenerationConfig.from_pretrained(
model_name,
trust_remote_code=True,
)
return model
def user_clear(message, chat_history):
"""Gen a response, clear message in user textbox."""
logger.debug(f"{message=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
logger.trace(f"{chat_history=}")
return "", chat_history
def user(message, chat_history):
"""Gen a response."""
logger.debug(f"{message=}")
logger.trace(f"{chat_history=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
return message, chat_history
# for rerun in tests
model = None
gc.collect()
torch.cuda.empty_cache()
if not torch.cuda.is_available():
# raise gr.Error("GPU not available, cant run. Turn on GPU and retry")
raise SystemExit("GPU not available, cant run. Turn on GPU and retry")
model = gen_model(model_name)
def bot(chat_history, **kwargs):
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
return chat_history
logger.debug(f"{chat_history=}")
try:
_ = """
response, chat_history = model.chat(
tokenizer,
message,
history=chat_history,
temperature=0.7,
repetition_penalty=1.2,
# max_length=128,
)
"""
logger.debug("run model.chat...")
model.generation_config.update(**kwargs)
response, chat_history = model.chat(
tokenizer,
message,
chat_history[:-1],
# **kwargs,
)
del response
return chat_history
except Exception as exc:
logger.error(exc)
chat_history[:-1].append(["message", str(exc)])
return chat_history
def bot_stream(chat_history, **kwargs):
logger.trace(f"{kwargs=}")
# somehow, empty chat_history
if chat_history is None or not chat_history:
logger.trace(f" *** {chat_history=}")
chat_history.append(["", ""])
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
raise gr.Error(f"{chat_history=}")
# yield chat_history
# for elm in model.chat_stream(tokenizer, message, chat_history):
model.generation_config.update(**kwargs)
response = ""
for elm in model.chat_stream(tokenizer, message, chat_history):
chat_history[-1] = [message, elm]
response = elm
yield chat_history
logger.debug(f"{response=}")
logger.debug(f"{model.generation_config=}")
SYSTEM_PROMPT = "You are a helpful assistant."
MAX_MAX_NEW_TOKENS = 2048 # sequence length 2048
MAX_NEW_TOKENS = 256
@dataclass
class Config:
max_new_tokens: int = MAX_NEW_TOKENS
repetition_penalty: float = 1.1
temperature: float = 1.0
top_k: int = 0
top_p: float = 0.9
# stats_default = SimpleNamespace(llm=model, system_prompt=SYSTEM_PROMPT, config=Config())
stats_default = SimpleNamespace(llm=None, system_prompt=SYSTEM_PROMPT, config=Config())
# input max_new_tokens temperature repetition_penalty top_k top_p system_prompt history
def api_fn( # pylint: disable=too-many-arguments
input_text: Optional[str],
# max_length: int = 256,
max_new_tokens: int = stats_default.config.max_new_tokens,
temperature: float = stats_default.config.temperature,
repetition_penalty: float = stats_default.config.repetition_penalty,
top_k: int = stats_default.config.top_k,
top_p: int = stats_default.config.top_p,
system_prompt: Optional[str] = None,
history: Optional[List[str]] = None,
):
if input_text is None:
input_text = ""
try:
input_text = str(input_text).strip()
except Exception as exc:
logger.error(exc)
input_text = ""
if not input_text:
return ""
if history is None:
history = []
try:
temperature = float(temperature)
except Exception:
temperature = stats_default.config.temperature
if system_prompt is None:
system_prompt = stats_default.system_prompt
# if max_length < 10: max_length = 4096
if max_new_tokens < 10:
max_new_tokens = stats_default.config.max_new_tokens
if top_p < 0.1 or top_p > 1:
top_p = stats_default.config.top_p
if temperature <= 0.5:
temperature = stats_default.config.temperature
_ = {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_k": top_k,
"top_p": top_p,
}
model.generation_config.update(**_)
try:
res, _ = model.chat(
tokenizer,
input_text,
history=history,
# max_length=max_length,
# append_history=False,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(f"{exc=}")
res = str(exc)
logger.debug(f"api {res=}")
logger.debug(f"api {model.generation_config=}")
return res
theme = gr.themes.Soft(text_size="sm")
with gr.Blocks(
theme=theme,
title=model_name.lower(),
css=css,
) as block:
stats = gr.State(stats_default)
# would this reset model?
model.generation_config = GenerationConfig.from_pretrained(
model_name,
trust_remote_code=True,
)
config = asdict(stats.value.config)
def bot_stream_state(chat_history):
logger.trace(f"{chat_history=}")
yield from bot_stream(chat_history, **config)
with gr.Accordion("🎈 Info", open=False):
gr.Markdown(
dedent(
f"""
## {model_name.lower()}
* temperature range: .51 and up; higher temperature implies more randomness. Suggested temperature for chatting and creative writing is around 1.1 while it should be set to 0.51-1.0 for summarizing and translation.
* Set `repetition_penalty` to 2.1 or higher for a chatty conversation (more unpredictable and undesirable output). Lower it to 1.1 or smaller if more focused anwsers are desired (for example for translations or fact-oriented queries).
* Smaller `top_k` probably will result in smoothier sentences.
(`top_k=0` is equivalent to `top_k` equal to very very big though.) Consult `transformers` documentation for more details.
* An API is available at https://mikeee-qwen-7b-chat.hf.space/ that can be queried, e.g., in python
```python
from gradio_client import Client
client = Client("https://mikeee-qwen-7b-chat.hf.space/")
result = client.predict(
"你好!", # user prompt
256, # max_new_tokens
1.2, # temperature
1.1, # repetition_penalty
0, # top_k
0.9, # top_p
"You are a helpful assistant.", # system_prompt
None, # history
api_name="/api"
)
print(result)
```
or in javascript
```js
import {{ client }} from "@gradio/client";
const app = await client("https://mikeee-qwen-7b-chat.hf.space/");
const result = await app.predict("api", [...]);
console.log(result.data);
```
Check documentation and examples by clicking `Use via API` at the very bottom of [https://huggingface.co./spaces/mikeee/qwen-7b-chat](https://huggingface.co./spaces/mikeee/qwen-7b-chat).
<p></p>
Most examples are meant for another model.
You probably should try to test
some related prompts. System prompt can be changed in Advaned Options as well."""
),
elem_classes="xsmall",
)
chatbot = gr.Chatbot(height=500, value=deque([], maxlen=5)) # type: ignore
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
show_label=False,
# container=False,
lines=4,
max_lines=30,
show_copy_button=True,
# ).style(container=False)
)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=True)
clear = gr.Button("Clear History", visible=True)
msg_submit_event = msg.submit(
# fn=conversation.user_turn,
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
submit_click_event = submit.click(
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
fn=user_clear, # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[msg_submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion(label="Advanced Options", open=False):
system_prompt = gr.Textbox(
label="System prompt",
value=stats_default.system_prompt,
lines=3,
visible=True,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=stats_default.config.max_new_tokens,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=0.1,
maximum=40.0,
step=0.1,
value=stats_default.config.repetition_penalty,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.51,
maximum=40.0,
step=0.1,
value=stats_default.config.temperature,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=stats_default.config.top_p,
)
top_k = gr.Slider(
label="Top-k",
minimum=0,
maximum=1000,
step=1,
value=stats_default.config.top_k,
)
def system_prompt_fn(system_prompt):
stats.value.system_prompt = system_prompt
logger.debug(f"{stats.value.system_prompt=}")
def max_new_tokens_fn(max_new_tokens):
stats.value.config.max_new_tokens = max_new_tokens
logger.debug(f"{stats.value.config.max_new_tokens=}")
def repetition_penalty_fn(repetition_penalty):
stats.value.config.repetition_penalty = repetition_penalty
logger.debug(f"{stats.value=}")
def temperature_fn(temperature):
stats.value.config.temperature = temperature
logger.debug(f"{stats.value=}")
def top_p_fn(top_p):
stats.value.config.top_p = top_p
logger.debug(f"{stats.value=}")
def top_k_fn(top_k):
stats.value.config.top_k = top_k
logger.debug(f"{stats.value=}")
system_prompt.change(system_prompt_fn, system_prompt)
max_new_tokens.change(max_new_tokens_fn, max_new_tokens)
repetition_penalty.change(repetition_penalty_fn, repetition_penalty)
temperature.change(temperature_fn, temperature)
top_p.change(top_p_fn, top_p)
top_k.change(top_k_fn, top_k)
def reset_fn(stats_):
logger.debug("reset_fn")
stats_ = gr.State(stats_default)
logger.debug(f"{stats_.value=}")
return (
stats_,
stats_default.system_prompt,
stats_default.config.max_new_tokens,
stats_default.config.repetition_penalty,
stats_default.config.temperature,
stats_default.config.top_p,
stats_default.config.top_k,
)
reset_btn = gr.Button("Reset")
reset_btn.click(
reset_fn,
stats,
[
stats,
system_prompt,
max_new_tokens,
repetition_penalty,
temperature,
top_p,
top_k,
],
)
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=example_list,
inputs=[msg],
examples_per_page=60,
)
with gr.Accordion("Disclaimer", open=False):
_ = model_name.lower()
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
f"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_history = gr.Chatbot(value=[])
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
# api_fn args order
# input_text max_new_tokens temperature repetition_penalty top_k top_p system_prompt history
api_btn.click(
api_fn,
[
input_text,
max_new_tokens,
temperature,
repetition_penalty,
top_k,
top_p,
system_prompt,
api_history, # dont know how to pass this in gradio_client.Client calls
],
out_text,
api_name="api",
)
if __name__ == "__main__":
logger.info("Just record start time")
_ = """
ret = sp.run("lsb_release -a", capture_output=1, check=0, shell=1, encoding='utf8')
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
ret = sp.run("nvidia-smi", capture_output=1, check=0, shell=1, encoding='utf8')
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
raise SystemExit("Interrupt by intentioin")
# """
block.queue(max_size=8).launch(debug=True)