Spaces:
Runtime error
Runtime error
Commit
·
473ad58
1
Parent(s):
8329b3b
cevap anahatari atama
Browse files- __pycache__/data_func.cpython-310.pyc +0 -0
- __pycache__/functions.cpython-310.pyc +0 -0
- __pycache__/optic1.cpython-310.pyc +0 -0
- __pycache__/reader.cpython-310.pyc +0 -0
- data +1 -1
- db/temp.csv +0 -26
- db/untitled.csv +0 -11
- functions.py +27 -3
- myindexs.txt +0 -0
- optic1.py +9 -13
- optic2.py +0 -0
- optic_pixel_value.txt +42 -0
- reader.py +111 -0
- screen/__pycache__/screen_scan.cpython-310.pyc +0 -0
- screen/screen_add_note.py +0 -34
- screen/screen_scan.py +62 -45
- toDo.txt +0 -11
__pycache__/data_func.cpython-310.pyc
CHANGED
Binary files a/__pycache__/data_func.cpython-310.pyc and b/__pycache__/data_func.cpython-310.pyc differ
|
|
__pycache__/functions.cpython-310.pyc
CHANGED
Binary files a/__pycache__/functions.cpython-310.pyc and b/__pycache__/functions.cpython-310.pyc differ
|
|
__pycache__/optic1.cpython-310.pyc
CHANGED
Binary files a/__pycache__/optic1.cpython-310.pyc and b/__pycache__/optic1.cpython-310.pyc differ
|
|
__pycache__/reader.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
data
CHANGED
@@ -1 +1 @@
|
|
1 |
-
Subproject commit
|
|
|
1 |
+
Subproject commit 1f0e28cc7a1ff84a41de050ba6f3f831c63182ef
|
db/temp.csv
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
sinif_kodu,ogrenci_no,ders_kodu,notu,yanlis_sorulari
|
2 |
-
10,19060365,13,65.0,"1,2,3,4"
|
3 |
-
10,19060365,56,80.0,"1,2,3"
|
4 |
-
10,19060322,5622,80.0,"1,2,3"
|
5 |
-
10,19060322,5622,70.0,"1,2,3"
|
6 |
-
10,15170018,56,30.0,"2,3,5"
|
7 |
-
10,15001718,56,50.0,"2,3,5"
|
8 |
-
10,15001718,56,60.0,"2,3,5"
|
9 |
-
11,15000000,15,40.0,"1,2,3"
|
10 |
-
11,15000001,15,30.0,"1,2,3"
|
11 |
-
11,12000002,22,36.0,"2,5,6"
|
12 |
-
15,19060365,15,100.0,[]
|
13 |
-
15,19060365,15,100.0,[]
|
14 |
-
10,19060365,10,100.0,[]
|
15 |
-
10,19060365,10,100.0,[]
|
16 |
-
10,19060365,10,100.0,[]
|
17 |
-
10,19060365,10,100.0,[]
|
18 |
-
10,19060365,10,100.0,[]
|
19 |
-
10,19060365,10,100.0,[]
|
20 |
-
10,19060365,10,100.0,[]
|
21 |
-
10,19060365,10,100.0,[]
|
22 |
-
10,19060365,10,100.0,[]
|
23 |
-
10,19060365,10,100.0,[]
|
24 |
-
10,19060365,10,100.0,[]
|
25 |
-
10,19060365,10,100.0,[]
|
26 |
-
10,19060365,10,100.0,[]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
db/untitled.csv
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
sinif_kodu,ogrenci_no,ders_kodu,notu,yanlis_sorulari
|
2 |
-
11,19060365,13,65,"1,2,3,4"
|
3 |
-
15,190603654,56,80,"1, 2, 3"
|
4 |
-
135,190603222654,5622,81,"1, 2, 3"
|
5 |
-
135,190603222654,5622,81,"1, 2, 3"
|
6 |
-
12,151718,56,80,"2,3,5"
|
7 |
-
[12],[151718],[56],[80],"['2,3,5']"
|
8 |
-
[12],[151718],[56],[80],"['2,3,5']"
|
9 |
-
15,15,15,89,"1,2,3"
|
10 |
-
15,15,15,30,"1,2,3"
|
11 |
-
111,12,22,36,2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
functions.py
CHANGED
@@ -78,25 +78,48 @@ def splitColumn(img):
|
|
78 |
def grading(answers,num_questions,myAnswers):
|
79 |
grading=[]
|
80 |
wrong_ans = []
|
|
|
|
|
81 |
for x in range(0,num_questions):
|
82 |
if answers[x] == myAnswers[x]:
|
83 |
grading.append(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
else:
|
85 |
grading.append(0)
|
86 |
wrong_ans.append(x+1)
|
87 |
|
88 |
|
89 |
score = (sum(grading)/num_questions)*100
|
90 |
-
return score ,wrong_ans
|
91 |
|
92 |
#piksel degerlerinde kullanici cevaplarini
|
93 |
#okuyupu index seklinde listeye kaydediyor
|
94 |
def user_answers(num_questions,myPixelVal):
|
95 |
myIndex=[]
|
|
|
96 |
for x in range (0,num_questions):
|
97 |
arr = myPixelVal[x]
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
return myIndex
|
101 |
|
102 |
#student id kismi yukardan asagiya dogru karsilastirma yaparak
|
@@ -197,4 +220,5 @@ def image_show(images):
|
|
197 |
with col7:
|
198 |
st.header("6")
|
199 |
st.image(images[7],width=150)
|
|
|
200 |
|
|
|
78 |
def grading(answers,num_questions,myAnswers):
|
79 |
grading=[]
|
80 |
wrong_ans = []
|
81 |
+
empty = []
|
82 |
+
|
83 |
for x in range(0,num_questions):
|
84 |
if answers[x] == myAnswers[x]:
|
85 |
grading.append(1)
|
86 |
+
|
87 |
+
elif answers[x] == -1:
|
88 |
+
grading.append(0)
|
89 |
+
wrong_ans.append(x+1)
|
90 |
+
|
91 |
+
elif answers[x] == 0:
|
92 |
+
empty.append(x+1)
|
93 |
+
|
94 |
else:
|
95 |
grading.append(0)
|
96 |
wrong_ans.append(x+1)
|
97 |
|
98 |
|
99 |
score = (sum(grading)/num_questions)*100
|
100 |
+
return score ,wrong_ans,empty
|
101 |
|
102 |
#piksel degerlerinde kullanici cevaplarini
|
103 |
#okuyupu index seklinde listeye kaydediyor
|
104 |
def user_answers(num_questions,myPixelVal):
|
105 |
myIndex=[]
|
106 |
+
|
107 |
for x in range (0,num_questions):
|
108 |
arr = myPixelVal[x]
|
109 |
+
|
110 |
+
#empty answers
|
111 |
+
if arr[1] < 150.0 and arr[2] < 150.0 and arr[3] < 150.0 and arr[4] < 150.0 and arr[5] < 150.0:
|
112 |
+
|
113 |
+
myIndex.append(0)
|
114 |
+
|
115 |
+
#2 or more answers
|
116 |
+
elif arr[1]+arr[2]>375 or arr[1]+arr[3]>375 or arr[1]+arr[4]>375 or arr[1]+arr[5]>375 or arr[2]+arr[3]>375 or arr[2]+arr[4]>375 or arr[2]+arr[5]>375 or arr[3]+arr[4]>375 or arr[3]+arr[5]>375 or arr[4]+arr[5]>375:
|
117 |
+
myIndex.append(-1)
|
118 |
+
|
119 |
+
else :
|
120 |
+
myIndexVal = np.where(arr == np.amax(arr))
|
121 |
+
myIndex.append(myIndexVal[0][0])
|
122 |
+
print(myIndex)
|
123 |
return myIndex
|
124 |
|
125 |
#student id kismi yukardan asagiya dogru karsilastirma yaparak
|
|
|
220 |
with col7:
|
221 |
st.header("6")
|
222 |
st.image(images[7],width=150)
|
223 |
+
|
224 |
|
myindexs.txt
ADDED
File without changes
|
optic1.py
CHANGED
@@ -13,16 +13,10 @@ choices=6
|
|
13 |
|
14 |
def optic1(ans_txt1,ans_txt2,ans_txt3,pathImage, save_images= True):
|
15 |
#cevap anahtarini dosyadan okuma ve sayiya cevirme
|
16 |
-
ans_abc_1 = functions.read_answers(ans_txt1)
|
17 |
-
ans_1 = functions.answers2numbers(ans_abc_1)
|
18 |
-
|
19 |
-
ans_abc_2 = functions.read_answers(ans_txt2)
|
20 |
-
ans_2 = functions.answers2numbers(ans_abc_2)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
#perspektif islemleri icin cozunurluk
|
28 |
wrap_h = 18*20
|
@@ -96,17 +90,17 @@ def optic1(ans_txt1,ans_txt2,ans_txt3,pathImage, save_images= True):
|
|
96 |
#boxes_1
|
97 |
myPixelVal_1 = functions.pixelVal(questions,choices,boxes_1)
|
98 |
myIndex_1 = functions.user_answers(questions,myPixelVal_1)
|
99 |
-
grading_1, wrong_ans_1 = functions.grading(ans_1,questions,myIndex_1)
|
100 |
|
101 |
#boxes_2
|
102 |
myPixelVal_2 = functions.pixelVal(questions,choices,boxes_2)
|
103 |
myIndex_2 = functions.user_answers(questions,myPixelVal_2)
|
104 |
-
grading_2, wrong_ans_2 = functions.grading(ans_2,questions,myIndex_2)
|
105 |
|
106 |
#boxes_3
|
107 |
myPixelVal_3 = functions.pixelVal(questions,choices,boxes_3)
|
108 |
myIndex_3 = functions.user_answers(questions,myPixelVal_3)
|
109 |
-
grading_3, wrong_ans_3 = functions.grading(ans_3,questions,myIndex_3)
|
110 |
|
111 |
|
112 |
student_idFix = ""
|
@@ -120,7 +114,9 @@ def optic1(ans_txt1,ans_txt2,ans_txt3,pathImage, save_images= True):
|
|
120 |
resim_listesi = [img,imgGray,imgBlur,imgCanny,imgContours,imgBiggestContour,imgThresh_1,imgThresh_2]
|
121 |
grading = [grading_1,grading_2,grading_3]
|
122 |
wrong_ans = [wrong_ans_1,wrong_ans_2,wrong_ans_3]
|
123 |
-
|
|
|
|
|
124 |
|
125 |
#sonuc = optic1(ans_txt="cevapanahtari.txt",pathImage= "denemeler/100luk_numarali.jpg")
|
126 |
#print(sonuc)
|
|
|
13 |
|
14 |
def optic1(ans_txt1,ans_txt2,ans_txt3,pathImage, save_images= True):
|
15 |
#cevap anahtarini dosyadan okuma ve sayiya cevirme
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
ans_1 = ans_txt1
|
18 |
+
ans_2 = ans_txt2
|
19 |
+
ans_3 = ans_txt3
|
|
|
20 |
|
21 |
#perspektif islemleri icin cozunurluk
|
22 |
wrap_h = 18*20
|
|
|
90 |
#boxes_1
|
91 |
myPixelVal_1 = functions.pixelVal(questions,choices,boxes_1)
|
92 |
myIndex_1 = functions.user_answers(questions,myPixelVal_1)
|
93 |
+
grading_1, wrong_ans_1, empty_1 = functions.grading(ans_1,questions,myIndex_1)
|
94 |
|
95 |
#boxes_2
|
96 |
myPixelVal_2 = functions.pixelVal(questions,choices,boxes_2)
|
97 |
myIndex_2 = functions.user_answers(questions,myPixelVal_2)
|
98 |
+
grading_2, wrong_ans_2, empty_2 = functions.grading(ans_2,questions,myIndex_2)
|
99 |
|
100 |
#boxes_3
|
101 |
myPixelVal_3 = functions.pixelVal(questions,choices,boxes_3)
|
102 |
myIndex_3 = functions.user_answers(questions,myPixelVal_3)
|
103 |
+
grading_3, wrong_ans_3 ,empty_3 = functions.grading(ans_3,questions,myIndex_3)
|
104 |
|
105 |
|
106 |
student_idFix = ""
|
|
|
114 |
resim_listesi = [img,imgGray,imgBlur,imgCanny,imgContours,imgBiggestContour,imgThresh_1,imgThresh_2]
|
115 |
grading = [grading_1,grading_2,grading_3]
|
116 |
wrong_ans = [wrong_ans_1,wrong_ans_2,wrong_ans_3]
|
117 |
+
empty = [empty_1,empty_2,empty_3]
|
118 |
+
myIndexs = [myIndex_1,myIndex_2,myIndex_3]
|
119 |
+
return grading, wrong_ans, student_idFix, resim_listesi,empty
|
120 |
|
121 |
#sonuc = optic1(ans_txt="cevapanahtari.txt",pathImage= "denemeler/100luk_numarali.jpg")
|
122 |
#print(sonuc)
|
optic2.py
ADDED
File without changes
|
optic_pixel_value.txt
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ 92. 201. 91. 93. 85. 70.]
|
2 |
+
[ 49. 181. 43. 55. 57. 42.]
|
3 |
+
[ 56. 57. 45. 185. 63. 48.]
|
4 |
+
[ 69. 50. 53. 61. 190. 46.]
|
5 |
+
[ 61. 57. 64. 198. 64. 40.]
|
6 |
+
[ 59. 59. 194. 59. 48. 32.]
|
7 |
+
[ 63. 60. 65. 60. 59. 176.]
|
8 |
+
[ 74. 197. 56. 57. 60. 55.]
|
9 |
+
[ 71. 59. 193. 62. 61. 63.]
|
10 |
+
[ 77. 55. 56. 195. 61. 56.]
|
11 |
+
[ 74. 61. 59. 61. 187. 56.]
|
12 |
+
[ 87. 54. 61. 61. 191. 58.]
|
13 |
+
[ 95. 69. 77. 204. 74. 76.]
|
14 |
+
[101. 72. 195. 78. 70. 69.]
|
15 |
+
[103. 73. 202. 71. 74. 75.]
|
16 |
+
[105. 75. 72. 77. 76. 200.]
|
17 |
+
[ 92. 78. 82. 202. 71. 65.]
|
18 |
+
[101. 77. 205. 71. 73. 71.]
|
19 |
+
[ 91. 210. 68. 74. 74. 59.]
|
20 |
+
[130. 244. 117. 111. 105. 91.]
|
21 |
+
[ 54. 74. 188. 84. 79. 62.]
|
22 |
+
[ 24. 47. 65. 173. 50. 38.]
|
23 |
+
[ 21. 49. 174. 66. 54. 35.]
|
24 |
+
[ 31. 185. 73. 54. 52. 48.]
|
25 |
+
[ 33. 198. 59. 58. 64. 43.]
|
26 |
+
[ 28. 63. 60. 61. 68. 165.]
|
27 |
+
[ 26. 57. 53. 64. 188. 44.]
|
28 |
+
[ 33. 190. 55. 55. 54. 37.]
|
29 |
+
[ 33. 61. 196. 62. 60. 51.]
|
30 |
+
[ 35. 59. 53. 195. 48. 45.]
|
31 |
+
[ 30. 56. 192. 57. 51. 35.]
|
32 |
+
[ 32. 51. 193. 57. 50. 67.]
|
33 |
+
[ 23. 53. 49. 56. 47. 212.]
|
34 |
+
[ 32. 54. 47. 52. 182. 67.]
|
35 |
+
[ 31. 61. 60. 194. 50. 76.]
|
36 |
+
[ 33. 60. 196. 58. 55. 62.]
|
37 |
+
[ 36. 59. 60. 191. 47. 51.]
|
38 |
+
[ 30. 185. 52. 55. 47. 58.]
|
39 |
+
[ 23. 59. 191. 62. 55. 58.]
|
40 |
+
[ 32. 51. 50. 63. 190. 60.]
|
41 |
+
[ 24. 48. 47. 192. 53. 60.]
|
42 |
+
[ 55. 78. 212. 78. 76. 97.]
|
reader.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import functions
|
4 |
+
|
5 |
+
#fotograf ozellikleri
|
6 |
+
heightImg = 300*4
|
7 |
+
widthImg = 210*4
|
8 |
+
#pathImage = "denemeler/100luk_numarali.jpg"
|
9 |
+
questions=20
|
10 |
+
choices=6
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
def reader(pathImage, save_images= True):
|
15 |
+
#cevap anahtarini dosyadan okuma ve sayiya cevirme
|
16 |
+
|
17 |
+
|
18 |
+
#perspektif islemleri icin cozunurluk
|
19 |
+
wrap_h = 18*20
|
20 |
+
wrap_v = 18*20
|
21 |
+
img = pathImage #eger girdi dogrudan np arrayse
|
22 |
+
#fotonun okunmasi ------------------------------------------------------------------------------------------------
|
23 |
+
#img = cv2.imread(pathImage)
|
24 |
+
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
|
25 |
+
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE
|
26 |
+
imgBiggestContour = img.copy()
|
27 |
+
imgFinal = img.copy()
|
28 |
+
imgContours = img.copy()
|
29 |
+
imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8)
|
30 |
+
|
31 |
+
#donusumler---------------------------------------------------------------------------------
|
32 |
+
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE
|
33 |
+
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR
|
34 |
+
imgCanny = cv2.Canny(imgBlur,10,70) # APPLY CANNY
|
35 |
+
|
36 |
+
#CONTOURS-------------------------------------------------------
|
37 |
+
contours, hierarchy = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
38 |
+
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS
|
39 |
+
|
40 |
+
#dortgen bulma--------------------------------------------------
|
41 |
+
rectCon = functions.rectContour(contours)
|
42 |
+
biggestContour = functions.getCornerPoints(rectCon[0])
|
43 |
+
secondContour = functions.getCornerPoints(rectCon[1])
|
44 |
+
thirdContour = functions.getCornerPoints(rectCon[2])
|
45 |
+
fourthContour = functions.getCornerPoints(rectCon[3])
|
46 |
+
|
47 |
+
#main
|
48 |
+
if biggestContour.size != 0 and secondContour.size != 0:
|
49 |
+
|
50 |
+
cv2.drawContours(imgBiggestContour, biggestContour,-1,(0,255,0),20)
|
51 |
+
cv2.drawContours(imgBiggestContour, secondContour,-1,(255,0,0),20) #sondk' kalinlik ortada renk
|
52 |
+
cv2.drawContours(imgBiggestContour, thirdContour,-1,(0,0,255),20) #sondk' kalinlik ortada renk
|
53 |
+
cv2.drawContours(imgBiggestContour, fourthContour,-1,(0,0,20),20) #sondk' kalinlik ortada renk
|
54 |
+
|
55 |
+
biggestContour=functions.reorder(biggestContour)
|
56 |
+
#cevap siklari icin -************************************************************
|
57 |
+
pts1 = np.float32(biggestContour)
|
58 |
+
pts2 = np.float32([[0, 0],[wrap_v, 0], [0, wrap_h],[wrap_v, wrap_h]])
|
59 |
+
matrix = cv2.getPerspectiveTransform(pts1, pts2)
|
60 |
+
|
61 |
+
imgWarpColored_1 = cv2.warpPerspective(img, matrix, (wrap_v, wrap_h))
|
62 |
+
imgWarpGray_1 = cv2.cvtColor(imgWarpColored_1,cv2.COLOR_BGR2GRAY)
|
63 |
+
imgThresh_1 = cv2.threshold(imgWarpGray_1,0,255,cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
64 |
+
|
65 |
+
#second buyuk icin perspektif
|
66 |
+
secondContour=functions.reorder(secondContour)
|
67 |
+
pts1_2 = np.float32(secondContour)
|
68 |
+
pts2_2 = np.float32([[0, 0],[wrap_v, 0], [0, wrap_h],[wrap_v, wrap_h]])
|
69 |
+
matrix_2 = cv2.getPerspectiveTransform(pts1_2, pts2_2)
|
70 |
+
imgWarpColored_2 = cv2.warpPerspective(img, matrix_2, (wrap_v, wrap_h))
|
71 |
+
imgWarpGray_2 = cv2.cvtColor(imgWarpColored_2,cv2.COLOR_BGR2GRAY)
|
72 |
+
#imgThresh_2 = cv2.threshold(imgWarpGray_2, 170, 255,cv2.THRESH_BINARY_INV )[1]
|
73 |
+
imgThresh_2 = cv2.threshold(imgWarpGray_2,0,255,cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
74 |
+
|
75 |
+
#student id
|
76 |
+
bubbles = functions.split_num(imgThresh_2, 10, 10)
|
77 |
+
myPixelVal_2 = functions.pixelVal(10,10,bubbles)
|
78 |
+
myPixelVal_2 = functions.id_reorder(myPixelVal_2)
|
79 |
+
student_id = functions.id_answers(10,myPixelVal_2)
|
80 |
+
#print(student_id)
|
81 |
+
|
82 |
+
#soru kisimi
|
83 |
+
column_3 = functions.splitColumn(imgThresh_1)
|
84 |
+
boxes_1 = functions.splitBoxes(column_3[0])
|
85 |
+
boxes_2 = functions.splitBoxes(column_3[1])
|
86 |
+
boxes_3 = functions.splitBoxes(column_3[2])
|
87 |
+
#boxes_1
|
88 |
+
myPixelVal_1 = functions.pixelVal(questions,choices,boxes_1)
|
89 |
+
myIndex_1 = functions.user_answers(questions,myPixelVal_1)
|
90 |
+
|
91 |
+
#boxes_2
|
92 |
+
myPixelVal_2 = functions.pixelVal(questions,choices,boxes_2)
|
93 |
+
myIndex_2 = functions.user_answers(questions,myPixelVal_2)
|
94 |
+
|
95 |
+
#boxes_3
|
96 |
+
myPixelVal_3 = functions.pixelVal(questions,choices,boxes_3)
|
97 |
+
myIndex_3 = functions.user_answers(questions,myPixelVal_3)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
student_idFix = ""
|
102 |
+
for number in student_id:
|
103 |
+
student_idFix += str(number)
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
myIndexs = [myIndex_1,myIndex_2,myIndex_3]
|
108 |
+
return student_idFix, myIndexs
|
109 |
+
|
110 |
+
#sonuc = optic1(ans_txt="cevapanahtari.txt",pathImage= "denemeler/100luk_numarali.jpg")
|
111 |
+
#print(sonuc)
|
screen/__pycache__/screen_scan.cpython-310.pyc
CHANGED
Binary files a/screen/__pycache__/screen_scan.cpython-310.pyc and b/screen/__pycache__/screen_scan.cpython-310.pyc differ
|
|
screen/screen_add_note.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import data_func
|
4 |
-
from data_func import DATASET_REPO_URL,DATA_FILENAME,DATA_FILE,HF_TOKEN
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
def screen_add_main():
|
10 |
-
st.title("Not Giris")
|
11 |
-
repo, repo_df = data_func.pull_read()
|
12 |
-
# Kullanıcıdan verileri alma
|
13 |
-
sinif_kodu = st.text_input("Sınıf Kodu")
|
14 |
-
ogrenci_no = st.text_input("Öğrenci No")
|
15 |
-
ders_kodu = st.text_input("Ders Kodu")
|
16 |
-
notu = st.slider("Notu", 0, 100)
|
17 |
-
yanlislar = st.text_input("Yanlış Sorulari (virgul ile ayirin)")
|
18 |
-
yanlislar = str(yanlislar)
|
19 |
-
|
20 |
-
if st.button("Veriyi Yukle"):
|
21 |
-
new_data = data_func.make_new_data(sinif_kodu=sinif_kodu,
|
22 |
-
ogrenci_no= ogrenci_no,
|
23 |
-
ders_kodu= ders_kodu,
|
24 |
-
notu=notu,
|
25 |
-
yanlislar= yanlislar)
|
26 |
-
updated_df = data_func.update(new_data,repo_df)
|
27 |
-
data_func.save_and_push(updated_df,repo)
|
28 |
-
st.subheader("Girilen Veriler")
|
29 |
-
st.write(new_data)
|
30 |
-
|
31 |
-
|
32 |
-
if __name__ == "__main__":
|
33 |
-
screen_add_main()
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
screen/screen_scan.py
CHANGED
@@ -9,7 +9,7 @@ import pandas as pd
|
|
9 |
from data_func import make_new_data,update,save_and_push
|
10 |
import os
|
11 |
from huggingface_hub import Repository
|
12 |
-
|
13 |
|
14 |
def pull_read(DATASET_REPO_URL,HF_TOKEN,DATA_FILE):
|
15 |
|
@@ -28,81 +28,98 @@ def convert_df_to_csv(df):
|
|
28 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
29 |
return df.to_csv().encode('utf-8')
|
30 |
|
|
|
31 |
def screen_scan_main():
|
|
|
|
|
32 |
|
33 |
-
col1,col2 = st.columns(2)
|
34 |
-
with col1:
|
35 |
-
teacher_code = st.text_input("Ogretmen kodu:",key=12)
|
36 |
-
with col2:
|
37 |
-
exam_code = st.text_input("Sınav Kodu:",key=13,value=10)
|
38 |
-
|
39 |
-
exam_code = int(exam_code)
|
40 |
teacher_code = str(teacher_code)
|
|
|
|
|
41 |
DATA_FILENAME = f"{teacher_code}.csv"
|
42 |
DATA_FILENAME = str(DATA_FILENAME)
|
43 |
|
44 |
image_file = st.file_uploader(
|
45 |
"Tarama Yapmak Icin Optigi Yukleyin", type=['jpeg', 'png', 'jpg', 'webp'])
|
46 |
-
|
47 |
-
|
48 |
if image_file != None:
|
49 |
-
|
50 |
-
with col3:
|
51 |
-
|
52 |
-
if st.button("Tara ve Sonucu Goruntule"):
|
53 |
-
repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
|
54 |
DATA_FILE = os.path.join("data", DATA_FILENAME),
|
55 |
HF_TOKEN = "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")
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
image = Image.open(image_file)
|
58 |
image = np.array(image.convert('RGB'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
#(ans_txt,pathImage, save_images= True)
|
60 |
-
|
61 |
-
ans_txt2=
|
62 |
-
ans_txt3=
|
63 |
pathImage=image,save_images=False)
|
64 |
|
65 |
#image_show(resim_list)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
DATA_FILE = os.path.join("data", DATA_FILENAME),
|
81 |
HF_TOKEN = "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")
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
#(ans_txt,pathImage, save_images= True)
|
86 |
-
|
87 |
ans_txt2="cevapanahtari/cevapanahtari_ders2.txt",
|
88 |
ans_txt3="cevapanahtari/cevapanahtari_ders3.txt",
|
89 |
pathImage=image,save_images=False)
|
90 |
|
91 |
#image_show(resim_list)
|
92 |
-
|
93 |
-
|
94 |
#
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
#st.dataframe(new_data)
|
100 |
-
|
101 |
#st.dataframe(updated,use_container_width=True)
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
file_name=f'{teacher_code}.csv',mime='text/csv',)
|
|
|
|
|
106 |
|
107 |
#python -m streamlit run app.py
|
108 |
if __name__ == '__main__':
|
|
|
9 |
from data_func import make_new_data,update,save_and_push
|
10 |
import os
|
11 |
from huggingface_hub import Repository
|
12 |
+
import reader
|
13 |
|
14 |
def pull_read(DATASET_REPO_URL,HF_TOKEN,DATA_FILE):
|
15 |
|
|
|
28 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
29 |
return df.to_csv().encode('utf-8')
|
30 |
|
31 |
+
|
32 |
def screen_scan_main():
|
33 |
+
teacher_code = st.text_input("Ogretmen kodu:",key=12)
|
34 |
+
password = st.text_input("Sıfre:",key=17,type="password")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
teacher_code = str(teacher_code)
|
37 |
+
password = str(password)
|
38 |
+
|
39 |
DATA_FILENAME = f"{teacher_code}.csv"
|
40 |
DATA_FILENAME = str(DATA_FILENAME)
|
41 |
|
42 |
image_file = st.file_uploader(
|
43 |
"Tarama Yapmak Icin Optigi Yukleyin", type=['jpeg', 'png', 'jpg', 'webp'])
|
|
|
|
|
44 |
if image_file != None:
|
45 |
+
repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
|
|
|
|
|
|
|
|
|
46 |
DATA_FILE = os.path.join("data", DATA_FILENAME),
|
47 |
HF_TOKEN = "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")
|
48 |
+
repo.git_pull()
|
49 |
+
|
50 |
+
if str(repo_df["ogrenci_no"][0]) == password:
|
51 |
+
st.write("Giris basarili")
|
52 |
+
|
53 |
+
exam_code = st.text_input("Sınav Kodu:",key=13,value=10)
|
54 |
+
|
55 |
+
exam_code = int(exam_code)
|
56 |
+
|
57 |
+
global myIndexs
|
58 |
+
|
59 |
+
if st.button("Cevap Anahtari Sec",key=51):
|
60 |
image = Image.open(image_file)
|
61 |
image = np.array(image.convert('RGB'))
|
62 |
+
#(ans_txt,pathImage, save_images= True)
|
63 |
+
resim_list,myIndexs =reader.reader(pathImage=image,save_images=False)
|
64 |
+
|
65 |
+
|
66 |
+
col3,col4 = st.columns(2)
|
67 |
+
with col3:
|
68 |
+
|
69 |
+
if st.button("Tara ve Sonucu Goruntule",key=52):
|
70 |
+
|
71 |
+
image = Image.open(image_file)
|
72 |
+
image = np.array(image.convert('RGB'))
|
73 |
#(ans_txt,pathImage, save_images= True)
|
74 |
+
grading, wrong_ans, student_idFix, resim_list,empty_ans =optic1.optic1(ans_txt1=myIndexs[0],
|
75 |
+
ans_txt2=myIndexs[1],
|
76 |
+
ans_txt3=myIndexs[2],
|
77 |
pathImage=image,save_images=False)
|
78 |
|
79 |
#image_show(resim_list)
|
80 |
+
if len(wrong_ans[0]) == 0:
|
81 |
+
wrong_ans[0] = "0"
|
82 |
+
wrong_ans_str = (str(wrong_ans[0]))
|
83 |
+
st.write("Ogrenci Numarasi:",student_idFix)
|
84 |
+
st.write("Ders1 Yanlis Yaptigi sorular:",(str(wrong_ans[0])))
|
85 |
+
st.write("Ders1 Notu:",int(grading[0]))
|
86 |
+
st.write("Ders2 Yanlis Yaptigi sorular:",(str(wrong_ans[1])))
|
87 |
+
st.write("Ders2 Notu:",int(grading[1]))
|
88 |
+
st.write("Ders3 Yanlis Yaptigi sorular:",(str(wrong_ans[2])))
|
89 |
+
st.write("Ders4 Notu:",int(grading[2]))
|
90 |
|
91 |
+
with col4:
|
92 |
+
if st.button("Tara ve Sonucu Kaydet"):
|
93 |
+
repo, repo_df = pull_read(DATASET_REPO_URL = "https://huggingface.co/datasets/mertbozkurt/school_data",
|
94 |
DATA_FILE = os.path.join("data", DATA_FILENAME),
|
95 |
HF_TOKEN = "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")
|
96 |
+
repo.git_pull()
|
97 |
+
|
98 |
+
image = Image.open(image_file)
|
99 |
+
image = np.array(image.convert('RGB'))
|
100 |
#(ans_txt,pathImage, save_images= True)
|
101 |
+
grading, wrong_ans, student_idFix, resim_list =optic1.optic1(ans_txt1="cevapanahtari/cevapanahtari_ders1.txt",
|
102 |
ans_txt2="cevapanahtari/cevapanahtari_ders2.txt",
|
103 |
ans_txt3="cevapanahtari/cevapanahtari_ders3.txt",
|
104 |
pathImage=image,save_images=False)
|
105 |
|
106 |
#image_show(resim_list)
|
107 |
+
if len(wrong_ans[0]) == 0:
|
108 |
+
wrong_ans[0] = "0"
|
109 |
#
|
110 |
+
wrong_ans_str = (str(wrong_ans[0]))
|
111 |
+
new_data = make_new_data(sinav_kodu=exam_code, ogrenci_no=int(student_idFix),
|
112 |
+
notu=int(grading[0]),yanlislar=str(wrong_ans_str))
|
113 |
|
114 |
#st.dataframe(new_data)
|
115 |
+
updated = update(new_data=new_data,ex_df=repo_df)
|
116 |
#st.dataframe(updated,use_container_width=True)
|
117 |
+
save_and_push(dataFrame=updated,repo=repo,fileName=f"data/{DATA_FILENAME}")
|
118 |
|
119 |
+
st.download_button(label="Tum verileri indirmek icin tiklayin",data=convert_df_to_csv(updated),
|
120 |
+
file_name=f'{teacher_code}.csv',mime='text/csv',)
|
121 |
+
else:
|
122 |
+
st.write("Giris basarisiz kontrol ediniz.")
|
123 |
|
124 |
#python -m streamlit run app.py
|
125 |
if __name__ == '__main__':
|
toDo.txt
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
wrong_ans gibi yaninda siklarinida kaydetsin
|
2 |
-
scan ettikten sonra verileri son kez sorsun ve veri tabanina kaydetsin
|
3 |
-
analiz sayfasi
|
4 |
-
ornek optikler icin sayfa ki kullanmak isteyen cikartsin
|
5 |
-
|
6 |
-
#-------------------------------------------
|
7 |
-
dersin hangi ders hanagi sinavi oldugu konusu
|
8 |
-
scan sayfasindan etiket secilip o sekilde kaydedilebilir
|
9 |
-
optikten okumak gerekmez optik uzerinde elle yazilmasi yeterli olur
|
10 |
-
o elle yazilan yerde buyutulur veya sayi olarak kodlanabilir bunlar kodlamaya gore sayisal
|
11 |
-
degerine gore hangi ders hangi sinav oldugu belli olur
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|