Latte-1 / sample /sample_ddp.py
maxin-cn's picture
Upload folder using huggingface_hub
94bafa8 verified
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Samples a large number of images from a pre-trained Latte model using DDP.
Subsequently saves a .npz file that can be used to compute FVD and other
evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations
For a simple single-GPU/CPU sampling script, see sample.py.
"""
import io
import os
import sys
import torch
sys.path.append(os.path.split(sys.path[0])[0])
import torch.distributed as dist
from utils import find_model
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import math
import argparse
import imageio
from omegaconf import OmegaConf
from models import get_models
from einops import rearrange
def create_npz_from_sample_folder(sample_dir, num=50_000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def main(args):
"""
Run sampling.
"""
torch.backends.cuda.matmul.allow_tf32 = True # True: fast but may lead to some small numerical differences
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
if args.seed:
seed = args.seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
# print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
if args.ckpt is None:
assert args.model == "Latte-XL/2", "Only Latte-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
# Load model:
latent_size = args.image_size // 8
args.latent_size = latent_size
model = get_models(args).to(device)
if args.use_compile:
model = torch.compile(model)
# a pre-trained model or load a custom Latte checkpoint from train.py:
ckpt_path = args.ckpt
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
diffusion = create_diffusion(str(args.num_sampling_steps))
# vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
# vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device)
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="sd-vae-ft-ema").to(device)
if args.use_fp16:
print('WARNING: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
# text_encoder.to(dtype=torch.float16)
assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0"
using_cfg = args.cfg_scale > 1.0
# Create folder to save samples:
# model_string_name = args.model.replace("/", "-")
# ckpt_string_name = os.path.basename(args.ckpt).replace(".pt", "") if args.ckpt else "pretrained"
# folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \
# f"cfg-{args.cfg_scale}-seed-{args.seed}"
# sample_folder_dir = f"{args.sample_dir}/{folder_name}"
sample_folder_dir = args.save_video_path
if args.seed:
sample_folder_dir = args.save_video_path + '-seed-' + str(args.seed)
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .mp4 samples at {sample_folder_dir}")
dist.barrier()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(math.ceil(args.num_fvd_samples / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Sample inputs:
if args.use_fp16:
z = torch.randn(n, args.num_frames, 4, latent_size, latent_size, dtype=torch.float16, device=device)
else:
z = torch.randn(n, args.num_frames, 4, latent_size, latent_size, device=device)
# Setup classifier-free guidance:
if using_cfg:
z = torch.cat([z, z], 0)
y = torch.randint(0, args.num_classes, (n,), device=device)
y_null = torch.tensor([101] * n, device=device)
y = torch.cat([y, y_null], dim=0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16)
sample_fn = model.forward_with_cfg
else:
model_kwargs = dict(y=None, use_fp16=args.use_fp16)
sample_fn = model.forward
# Sample images:
if args.sample_method == 'ddim':
samples = diffusion.ddim_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device
)
elif args.sample_method == 'ddpm':
samples = diffusion.p_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device
)
if using_cfg:
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
if args.use_fp16:
samples = samples.to(dtype=torch.float16)
b, f, c, h, w = samples.shape
samples = rearrange(samples, 'b f c h w -> (b f) c h w')
samples = vae.decode(samples / 0.18215).sample
samples = rearrange(samples, '(b f) c h w -> b f c h w', b=b)
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
sample = ((sample * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1).contiguous()
index = i * dist.get_world_size() + rank + total
# Image.fromarray(sample).save(f"{sample_folder_dir}/{index:04d}.png")
sample_save_path = f"{sample_folder_dir}/{index:04d}.mp4"
imageio.mimwrite(sample_save_path, sample, fps=8, quality=9)
total += global_batch_size
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
# if rank == 0:
# create_npz_from_sample_folder(sample_folder_dir, args.num_fvd_samples)
# print("Done.")
# dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
parser.add_argument("--ckpt", type=str, default="")
parser.add_argument("--save_video_path", type=str, default="./sample_videos/")
parser.add_argument("--save_ceph", default=False, action='store_true')
args = parser.parse_args()
omega_conf = OmegaConf.load(args.config)
omega_conf.ckpt = args.ckpt
omega_conf.save_video_path = args.save_video_path
omega_conf.save_ceph = args.save_ceph
main(omega_conf)