mattmdjaga
commited on
Commit
·
21232f6
1
Parent(s):
206aa70
Added type hinting and some clean up
Browse files- .gitignore +1 -0
- app.py +18 -19
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
test.ipynb
|
2 |
data
|
|
|
|
1 |
test.ipynb
|
2 |
data
|
3 |
+
__pycache__
|
app.py
CHANGED
@@ -5,6 +5,7 @@ from PIL import Image, ImageDraw
|
|
5 |
import requests
|
6 |
from transformers import SamModel, SamProcessor
|
7 |
import cv2
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
@@ -12,7 +13,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
12 |
model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
13 |
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
14 |
|
15 |
-
def mask_2_dots(mask):
|
16 |
gray = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
17 |
_, thresh = cv2.threshold(gray, 127, 255, 0)
|
18 |
kernel = np.ones((5,5),np.uint8)
|
@@ -26,34 +27,32 @@ def mask_2_dots(mask):
|
|
26 |
points.append([cx, cy])
|
27 |
return [points]
|
28 |
|
29 |
-
def
|
30 |
-
dots = inputs['mask']
|
31 |
-
points = mask_2_dots(dots)
|
32 |
-
|
33 |
-
image_input = inputs['image']
|
34 |
image_input = Image.fromarray(image_input)
|
35 |
|
36 |
inputs = processor(image_input, input_points=points, return_tensors="pt").to(device)
|
37 |
-
# Forward pass
|
38 |
outputs = model(**inputs)
|
39 |
-
|
40 |
-
# Postprocess outputs
|
41 |
-
draw = ImageDraw.Draw(image_input)
|
42 |
-
for point in points[0]:
|
43 |
-
draw.ellipse((point[0] - 10, point[1] - 10, point[0] + 10, point[1] + 10), fill="red")
|
44 |
-
|
45 |
-
|
46 |
masks = processor.image_processor.post_process_masks(
|
47 |
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
|
48 |
)
|
49 |
-
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
pred_masks = [image_input]
|
54 |
-
for i in range(
|
55 |
-
|
56 |
-
pred_masks.append(Image.fromarray((mask[:,:,i] * 255).astype(np.uint8)))
|
57 |
|
58 |
return pred_masks
|
59 |
|
|
|
5 |
import requests
|
6 |
from transformers import SamModel, SamProcessor
|
7 |
import cv2
|
8 |
+
from typing import List
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
|
|
13 |
model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
14 |
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
15 |
|
16 |
+
def mask_2_dots(mask: np.ndarray) -> List[List[int]]:
|
17 |
gray = cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY)
|
18 |
_, thresh = cv2.threshold(gray, 127, 255, 0)
|
19 |
kernel = np.ones((5,5),np.uint8)
|
|
|
27 |
points.append([cx, cy])
|
28 |
return [points]
|
29 |
|
30 |
+
def foward_pass(image_input: np.ndarray, points: List[List[int]]) -> np.ndarray:
|
|
|
|
|
|
|
|
|
31 |
image_input = Image.fromarray(image_input)
|
32 |
|
33 |
inputs = processor(image_input, input_points=points, return_tensors="pt").to(device)
|
|
|
34 |
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
masks = processor.image_processor.post_process_masks(
|
36 |
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
|
37 |
)
|
38 |
+
masks = masks[0].squeeze(0).numpy().transpose(1, 2, 0)
|
39 |
|
40 |
+
return masks
|
41 |
+
|
42 |
+
def main_func(inputs) -> List[Image.Image]:
|
43 |
+
dots = inputs['mask']
|
44 |
+
points = mask_2_dots(dots)
|
45 |
+
image_input = inputs['image']
|
46 |
+
masks = foward_pass(image_input, points)
|
47 |
+
|
48 |
+
image_input = Image.fromarray(image_input)
|
49 |
+
draw = ImageDraw.Draw(image_input)
|
50 |
+
for point in points[0]:
|
51 |
+
draw.ellipse((point[0] - 10, point[1] - 10, point[0] + 10, point[1] + 10), fill="red")
|
52 |
|
53 |
pred_masks = [image_input]
|
54 |
+
for i in range(masks.shape[2]):
|
55 |
+
pred_masks.append(Image.fromarray((masks[:,:,i] * 255).astype(np.uint8)))
|
|
|
56 |
|
57 |
return pred_masks
|
58 |
|