import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load model and tokenizer model_name = "martinbravo/llama_finetuned_test" base_model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Load tokenizer and model locally tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", # Automatically maps model to GPU/CPU trust_remote_code=True, # If model uses custom implementations ) # Create a text-generation pipeline generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Build input prompt prompt = system_message + "\n" for user_input, assistant_response in history: prompt += f"User: {user_input}\nAssistant: {assistant_response}\n" prompt += f"User: {message}\nAssistant:" # Generate response response = generator( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, # Sampling for diverse responses )[0]["generated_text"] # Extract the assistant's response assistant_response = response[len(prompt) :].strip() yield assistant_response # Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()