Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
# Load model and tokenizer | |
model_name = "martinbravo/llama_finetuned_test" | |
base_model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" | |
# Load tokenizer and model locally | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto", # Automatically maps model to GPU/CPU | |
trust_remote_code=True, # If model uses custom implementations | |
) | |
# Create a text-generation pipeline | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Build input prompt | |
prompt = system_message + "\n" | |
for user_input, assistant_response in history: | |
prompt += f"User: {user_input}\nAssistant: {assistant_response}\n" | |
prompt += f"User: {message}\nAssistant:" | |
# Generate response | |
response = generator( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, # Sampling for diverse responses | |
)[0]["generated_text"] | |
# Extract the assistant's response | |
assistant_response = response[len(prompt) :].strip() | |
yield assistant_response | |
# Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |