File size: 10,856 Bytes
619d437
 
 
 
 
 
fc79ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619d437
c8e1db0
 
 
fc79ff9
c8e1db0
 
 
fc79ff9
 
 
 
619d437
fc79ff9
619d437
fc79ff9
c69ef9e
fc79ff9
c69ef9e
fc79ff9
c69ef9e
fc79ff9
c69ef9e
fc79ff9
c69ef9e
fc79ff9
c69ef9e
fc79ff9
 
 
619d437
 
fc79ff9
 
619d437
 
 
 
fc79ff9
 
 
 
 
 
 
 
 
 
 
619d437
fc79ff9
619d437
 
 
 
 
fc79ff9
 
 
619d437
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import gradio as gr
import cv2
import numpy as np
from datetime import datetime
import random

def basic_filters(image, filter_type):
    """Applies basic image filters"""
    if filter_type == "Grayscale":
        return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    elif filter_type == "Sepia":
        sepia_filter = np.array([
            [0.272, 0.534, 0.131],
            [0.349, 0.686, 0.168],
            [0.393, 0.769, 0.189]
        ])
        return cv2.transform(image, sepia_filter)
    elif filter_type == "X-Ray":
        # Enhanced X-ray effect
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        inverted = cv2.bitwise_not(gray)
        # Increase contrast
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        enhanced = clahe.apply(inverted)
        # Sharpen
        kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
        sharpened = cv2.filter2D(enhanced, -1, kernel)
        return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR)
    elif filter_type == "Blur":
        return cv2.GaussianBlur(image, (15, 15), 0)

def classic_filters(image, filter_type):
    """Classic image filters"""
    if filter_type == "Pencil Sketch":
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        inverted = cv2.bitwise_not(gray)
        blurred = cv2.GaussianBlur(inverted, (21, 21), 0)
        sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256)
        return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
    
    elif filter_type == "Sharpen":
        kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
        return cv2.filter2D(image, -1, kernel)
    
    elif filter_type == "Emboss":
        kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]])
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        emboss = cv2.filter2D(gray, -1, kernel) + 128
        return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR)
    
    elif filter_type == "Edge Detection":
        edges = cv2.Canny(image, 100, 200)
        return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)

def creative_filters(image, filter_type):
    """Creative and unusual image filters"""
    if filter_type == "Pixel Art":
        h, w = image.shape[:2]
        pixel_size = 20
        small = cv2.resize(image, (w//pixel_size, h//pixel_size))
        return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
    
    elif filter_type == "Mosaic Effect":
        h, w = image.shape[:2]
        mosaic_size = 30
        for i in range(0, h, mosaic_size):
            for j in range(0, w, mosaic_size):
                roi = image[i:i+mosaic_size, j:j+mosaic_size]
                if roi.size > 0:
                    color = np.mean(roi, axis=(0,1))
                    image[i:i+mosaic_size, j:j+mosaic_size] = color
        return image
    
    elif filter_type == "Rainbow":
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        h, w = image.shape[:2]
        for i in range(h):
            hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8)
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    elif filter_type == "Night Vision":
        green_image = image.copy()
        green_image[:,:,0] = 0  # Blue channel
        green_image[:,:,2] = 0  # Red channel
        return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50)

def special_effects(image, filter_type):
    """Applies special effects"""
    if filter_type == "Matrix Effect":
        green_matrix = np.zeros_like(image)
        green_matrix[:,:,1] = image[:,:,1]  # Only green channel
        random_brightness = np.random.randint(0, 255, size=image.shape[:2])
        green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255)
        return green_matrix
    
    elif filter_type == "Wave Effect":
        rows, cols = image.shape[:2]
        img_output = np.zeros(image.shape, dtype=image.dtype)
        
        for i in range(rows):
            for j in range(cols):
                offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180))
                offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180))
                if i+offset_x < rows and j+offset_y < cols:
                    img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols]
                else:
                    img_output[i,j] = 0
        return img_output
    
    elif filter_type == "Timestamp":
        output = image.copy()
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2)
        return output
    
    elif filter_type == "Glitch Effect":
        glitch = image.copy()
        h, w = image.shape[:2]
        for _ in range(10):
            x1 = random.randint(0, w-50)
            y1 = random.randint(0, h-50)
            x2 = random.randint(x1, min(x1+50, w))
            y2 = random.randint(y1, min(y1+50, h))
            glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2], 
                                          random.randint(-20, 20), 
                                          axis=random.randint(0, 1))
        return glitch

def artistic_filters(image, filter_type):
    """Applies artistic image filters"""
    if filter_type == "Pop Art":
        img_small = cv2.resize(image, None, fx=0.5, fy=0.5)
        img_color = cv2.resize(img_small, (image.shape[1], image.shape[0]))
        for _ in range(2):
            img_color = cv2.bilateralFilter(img_color, 9, 300, 300)
        hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV)
        hsv[:,:,1] = hsv[:,:,1]*1.5
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    elif filter_type == "Oil Paint":
        ret = np.float32(image.copy())
        ret = cv2.bilateralFilter(ret, 9, 75, 75)
        ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15)
        ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4)
        return np.uint8(ret)
    
    elif filter_type == "Cartoon":
        # Enhanced cartoon effect
        color = image.copy()
        gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
        gray = cv2.medianBlur(gray, 5)
        edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
        color = cv2.bilateralFilter(color, 9, 300, 300)
        cartoon = cv2.bitwise_and(color, color, mask=edges)
        # Increase color saturation
        hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV)
        hsv[:,:,1] = hsv[:,:,1]*1.4  # Increase saturation
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)

def atmospheric_filters(image, filter_type):
    """Applies atmospheric filters"""
    if filter_type == "Autumn":
        autumn_filter = np.array([
            [0.393, 0.769, 0.189],
            [0.349, 0.686, 0.168],
            [0.272, 0.534, 0.131]
        ])
        autumn = cv2.transform(image, autumn_filter)
        # Increase color warmth
        hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV)
        hsv[:,:,0] = hsv[:,:,0]*0.8  # Shift towards orange/yellow tones
        hsv[:,:,1] = hsv[:,:,1]*1.2  # Increase saturation
        return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    
    elif filter_type == "Nostalgia":
        image = cv2.convertScaleAbs(image, alpha=0.9, beta=10)
        sepia = cv2.transform(image, np.array([
            [0.393, 0.769, 0.189],
            [0.349, 0.686, 0.168],
            [0.272, 0.534, 0.131]
        ]))
        # Add vignette effect
        h, w = image.shape[:2]
        kernel = np.zeros((h, w))
        center = (h//2, w//2)
        for i in range(h):
            for j in range(w):
                dist = np.sqrt((i-center[0])**2 + (j-center[1])**2)
                kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2))
        kernel = np.dstack([kernel]*3)
        return cv2.multiply(sepia, kernel).astype(np.uint8)
    
    elif filter_type == "Brightness Increase":
        # Enhanced brightness increase
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        # Increase brightness
        hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30)
        # Slightly increase contrast
        return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0)

basic_filters_list = ["Grayscale", "Sepia", "X-Ray", "Blur"]
classic_filters_list = ["Pencil Sketch", "Sharpen", "Emboss", "Edge Detection"]
creative_filters_list = ["Pixel Art", "Mosaic Effect", "Rainbow", "Night Vision"]
special_effects_list = ["Matrix Effect", "Wave Effect", "Timestamp", "Glitch Effect"]
artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"]
atmospheric_filters_list = ["Autumn", "Nostalgia", "Brightness Increase"]

def image_processing(image, filters):
    """Main image processing function"""
    if image is None:
        return None

    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

    for filter_type in filters:
        if filter_type in basic_filters_list:
            image = basic_filters(image, filter_type)
        elif filter_type in classic_filters_list:
            image = classic_filters(image, filter_type)
        elif filter_type in creative_filters_list:
            image = creative_filters(image, filter_type)
        elif filter_type in special_effects_list:
            image = special_effects(image, filter_type)
        elif filter_type in artistic_filters_list:
            image = artistic_filters(image, filter_type)
        elif filter_type in atmospheric_filters_list:
            image = atmospheric_filters(image, filter_type)

    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if len(image.shape) == 3 else image

with gr.Blocks(theme=gr.themes.Monochrome()) as app:
    gr.Markdown("# 🎨 Image Filter Studio")

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="numpy", label="📸 Upload Photo")
            with gr.Accordion("ℹ️ Filter Categories", open=True):
                filters = gr.CheckboxGroup(
                    [
                        "Grayscale", "Sepia", "X-Ray", "Blur",
                        "Pencil Sketch", "Sharpen", "Emboss", "Edge Detection",
                        "Pixel Art", "Mosaic Effect", "Rainbow", "Night Vision",
                        "Matrix Effect", "Wave Effect", "Timestamp", "Glitch Effect",
                        "Pop Art", "Oil Paint", "Cartoon",
                        "Autumn", "Nostalgia", "Brightness Increase"
                    ],
                    label="🎭 Choose Filter(s)",
                    info="Select multiple effect to apply"
                )
            submit_button = gr.Button("✨ Apply Filter(s)", variant="primary")
            
        with gr.Column():
            image_output = gr.Image(label="🖼️ Filtered Photo")
    
    submit_button.click(
        image_processing,
        inputs=[image_input, filters],
        outputs=image_output
    )

app.launch(share=True)