DocOwl / mplug_docowl /processor.py
AnwenHu's picture
Upload 52 files
d87616f verified
from einops import rearrange, repeat
import torch
from torchvision import transforms
from PIL import Image, ImageFile
import random
from torchvision.ops.boxes import box_area
from torchvision.transforms.transforms import InterpolationMode
from torchvision.transforms import functional as F
import numpy as np
from icecream import ic
ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None
def box_iou(boxes1, area1, boxes2, eps=1e-5):
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union+eps)
return iou, union
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
# anchors x1 y1 x2 y2
# image_size: (h, w)
# xyxy
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)
boxes1 = anchors
boxes2 = input_image_bbox
boxes3 = anchors.clone()
# y2
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
area1 = anchors_areas
iou, _ = box_iou(boxes1, area1, boxes2)
iou = iou.squeeze(1)
shape_iou, _ = box_iou(boxes1, area1, boxes3)
shape_iou = shape_iou.diag()
# 优先匹配形状接近 再匹配分辨率接近
index = torch.argmax(shape_iou*100+iou,dim=0)
return index
class AnchorResize(torch.nn.Module):
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
super().__init__()
# xyxy
self.anchors = torch.tensor(
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]]
for _ in anchors], requires_grad=False
)
self.anchor_areas = box_area(self.anchors)
self.interpolation = interpolation
self.antialias = antialias
def forward(self, img, skip_resize=False):
"""
Args:
img (PIL Image or Tensor): Image to be scaled.
Returns:
PIL Image or Tensor: Rescaled image.
"""
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
target_size = self.anchors[selected_anchor][2:].tolist() # w,h
if skip_resize:
# for debug
return selected_anchor
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor
def __repr__(self) -> str:
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
return f"{self.__class__.__name__}{detail}"
grid_dict = {
'grid_1':[
(1,1)],
'grid_4':[
(1,1),
(1,2),(2,1),
(1,3),(3,1),
(2,2),(1,4),(4,1)],
'grid_9':[
(1,1),
(1,2),(2,1),
(1,3),(3,1),
(2,2),(1,4),(4,1),
(1,5),(5,1),
(1,6),(6,1),(2,3),(3,2),
(1,7),(7,1),
(4,2),(2,4),(1,8),(8,1),
(3,3),(1,9),(9,1)],
'grid_3x3':[
(3,3)],
'grid_20':[
(1, 1),
(1, 2), (2, 1),
(1, 3), (3, 1), (1, 4), (2, 2), (4, 1),
(1, 5), (5, 1),
(1, 6), (2, 3), (3, 2), (6, 1),
(1, 7), (7, 1),
(1, 8), (2, 4), (4, 2), (8, 1),
(1, 9), (3, 3), (9, 1),
(1, 10), (2, 5), (5, 2), (10, 1),
(1, 11), (11, 1),
(2, 6), (3, 4), (4, 3), (6, 2),
(2, 7), (7, 2),
(3, 5), (5, 3),
(2, 8), (4, 4), (8, 2),
(2, 9), (3, 6), (6, 3), (9, 2),
(2, 10), (4, 5), (5, 4), (10, 2)]
}
class DocProcessor():
def __init__(self, image_size=224, anchors='grid_9', add_global_img=True, add_textual_crop_indicator=False):
self.add_global_img = add_global_img
self.add_textual_crop_indicator = add_textual_crop_indicator
self.media_token= "<|image|>"
# h,w
if isinstance(image_size, int):
image_size = (image_size, image_size)
self.image_size = image_size
# h,w
anchors = grid_dict[anchors]
self.anchors = [tuple(_) for _ in anchors]
self.anchor_max = max([max(_) for _ in self.anchors])
# xywh -> xyxy
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
self.image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
def _process_image(self, images):
new_images = []
new_patch_position = []
num_image_mult = []
for image in images:
if self.add_global_img:
nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
image, selected_anchor = self.resizer(image)
image_input = self.image_transform(image) # h,w,3 -> 3,h,w
# rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
if self.add_global_img:
image_input = torch.cat([nocut_image, image_input], dim=0)
anchor = self.anchors[selected_anchor] # w,h
ic(anchor)
patch_position = torch.cat([
repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)
if self.add_global_img:
patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)
new_images.append(image_input)
new_patch_position.append(patch_position)
num_image_mult.append(patch_position.shape[0])
new_images = torch.cat(new_images,dim=0)
new_patch_position = torch.cat(new_patch_position, dim=0)
return new_images, new_patch_position, num_image_mult
def __call__(self, images=None, query=None):
assert images is not None
if not isinstance(images, list):
images = [images]
image_pils = []
for image in images:
if isinstance(image, str):
image = Image.open(image).convert('RGB')
else:
image = image.convert('RGB')
# ic(image.size)
image_pils.append(image)
image_data, patch_position, num_image_mult = self._process_image(image_pils)
assert self.media_token in query
text_list = query.split(self.media_token)
text = text_list[0]
image_token_ptr = 0
for next_text in text_list[1:]:
if self.add_textual_crop_indicator:
# generate image placeholders with interleaved texutual crop indicator
# e.g. <global_img><|image|><crop_img_row0_col0><|image|><crop_img_row0_col1><|image|>...
for patch_pos in patch_position.tolist():
# global non-crop image
if patch_pos[0] == self.anchor_max and patch_pos[1] == self.anchor_max:
text += '<global_img><|image|>'
else:
row_col = 'row'+str(patch_pos[0])+'_col'+str(patch_pos[1])
text += '<crop_img_'+row_col+'><|image|>'
else:
# generate successive image placeholders for a image, 1 crop img == 1 <|image|>
text += '<|image|>'*num_image_mult[image_token_ptr]
text += next_text
image_token_ptr += 1
return image_data, patch_position, text