File size: 6,032 Bytes
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import base64
import json
import mimetypes
import os
import uuid
from io import BytesIO
from typing import Optional

import requests
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from PIL import Image
from transformers import AutoProcessor

from smolagents import Tool, tool


load_dotenv(override=True)

idefics_processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-chatty")


def process_images_and_text(image_path, query, client):
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": query},
            ],
        },
    ]

    prompt_with_template = idefics_processor.apply_chat_template(messages, add_generation_prompt=True)

    # load images from local directory

    # encode images to strings which can be sent to the endpoint
    def encode_local_image(image_path):
        # load image
        image = Image.open(image_path).convert("RGB")

        # Convert the image to a base64 string
        buffer = BytesIO()
        image.save(buffer, format="JPEG")  # Use the appropriate format (e.g., JPEG, PNG)
        base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")

        # add string formatting required by the endpoint
        image_string = f"data:image/jpeg;base64,{base64_image}"

        return image_string

    image_string = encode_local_image(image_path)
    prompt_with_images = prompt_with_template.replace("<image>", "![]({}) ").format(image_string)

    payload = {
        "inputs": prompt_with_images,
        "parameters": {
            "return_full_text": False,
            "max_new_tokens": 200,
        },
    }

    return json.loads(client.post(json=payload).decode())[0]


# Function to encode the image
def encode_image(image_path):
    if image_path.startswith("http"):
        user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
        request_kwargs = {
            "headers": {"User-Agent": user_agent},
            "stream": True,
        }

        # Send a HTTP request to the URL
        response = requests.get(image_path, **request_kwargs)
        response.raise_for_status()
        content_type = response.headers.get("content-type", "")

        extension = mimetypes.guess_extension(content_type)
        if extension is None:
            extension = ".download"

        fname = str(uuid.uuid4()) + extension
        download_path = os.path.abspath(os.path.join("downloads", fname))

        with open(download_path, "wb") as fh:
            for chunk in response.iter_content(chunk_size=512):
                fh.write(chunk)

        image_path = download_path

    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


headers = {"Content-Type": "application/json", "Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"}


def resize_image(image_path):
    img = Image.open(image_path)
    width, height = img.size
    img = img.resize((int(width / 2), int(height / 2)))
    new_image_path = f"resized_{image_path}"
    img.save(new_image_path)
    return new_image_path


class VisualQATool(Tool):
    name = "visualizer"
    description = "A tool that can answer questions about attached images."
    inputs = {
        "image_path": {
            "description": "The path to the image on which to answer the question",
            "type": "string",
        },
        "question": {"description": "the question to answer", "type": "string", "nullable": True},
    }
    output_type = "string"

    client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty")

    def forward(self, image_path: str, question: Optional[str] = None) -> str:
        output = ""
        add_note = False
        if not question:
            add_note = True
            question = "Please write a detailed caption for this image."
        try:
            output = process_images_and_text(image_path, question, self.client)
        except Exception as e:
            print(e)
            if "Payload Too Large" in str(e):
                new_image_path = resize_image(image_path)
                output = process_images_and_text(new_image_path, question, self.client)

        if add_note:
            output = (
                f"You did not provide a particular question, so here is a detailed caption for the image: {output}"
            )

        return output


@tool
def visualizer(image_path: str, question: Optional[str] = None) -> str:
    """A tool that can answer questions about attached images.

    Args:
        image_path: The path to the image on which to answer the question. This should be a local path to downloaded image.
        question: The question to answer.
    """

    add_note = False
    if not question:
        add_note = True
        question = "Please write a detailed caption for this image."
    if not isinstance(image_path, str):
        raise Exception("You should provide at least `image_path` string argument to this tool!")

    mime_type, _ = mimetypes.guess_type(image_path)
    base64_image = encode_image(image_path)

    payload = {
        "model": "gpt-4o",
        "messages": [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": question},
                    {"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}},
                ],
            }
        ],
        "max_tokens": 1000,
    }
    response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
    try:
        output = response.json()["choices"][0]["message"]["content"]
    except Exception:
        raise Exception(f"Response format unexpected: {response.json()}")

    if add_note:
        output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}"

    return output