File size: 10,344 Bytes
b97f2de
 
 
 
 
 
 
e76df21
b97f2de
 
 
 
 
e76df21
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
e76df21
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76df21
 
b97f2de
e76df21
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76df21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97f2de
 
 
 
e76df21
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
 
 
1a257da
a379d16
 
 
 
b97f2de
 
 
a379d16
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
b97f2de
 
 
 
 
a63edd5
b97f2de
a63edd5
b97f2de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional

import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr

from scripts.reformulator import prepare_response
from scripts.run_agents import (
    get_single_file_description,
    get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
    ArchiveSearchTool,
    FinderTool,
    FindNextTool,
    PageDownTool,
    PageUpTool,
    SearchInformationTool,
    SimpleTextBrowser,
    VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm

from smolagents import (
    MANAGED_AGENT_PROMPT,
    CodeAgent,
    HfApiModel,
    LiteLLMModel,
    Model,
    ToolCallingAgent,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types


AUTHORIZED_IMPORTS = [
    "requests",
    "zipfile",
    "os",
    "pandas",
    "numpy",
    "sympy",
    "json",
    "bs4",
    "pubchempy",
    "xml",
    "yahoo_finance",
    "Bio",
    "sklearn",
    "scipy",
    "pydub",
    "io",
    "PIL",
    "chess",
    "PyPDF2",
    "pptx",
    "torch",
    "datetime",
    "fractions",
    "csv",
]
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))

append_answer_lock = threading.Lock()

SET = "validation"

custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}

### LOAD EVALUATION DATASET

eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET]
eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"})


def preprocess_file_paths(row):
    if len(row["file_name"]) > 0:
        row["file_name"] = f"data/gaia/{SET}/" + row["file_name"]
    return row


eval_ds = eval_ds.map(preprocess_file_paths)
eval_df = pd.DataFrame(eval_ds)
print("Loaded evaluation dataset:")
print(eval_df["task"].value_counts())

user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"

BROWSER_CONFIG = {
    "viewport_size": 1024 * 5,
    "downloads_folder": "downloads_folder",
    "request_kwargs": {
        "headers": {"User-Agent": user_agent},
        "timeout": 300,
    },
    "serpapi_key": os.getenv("SERPAPI_API_KEY"),
}

os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)

model = LiteLLMModel(
    "gpt-4o",
    custom_role_conversions=custom_role_conversions,
    api_key=os.getenv("OPENAI_API_KEY")
)

text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)

browser = SimpleTextBrowser(**BROWSER_CONFIG)

WEB_TOOLS = [
    SearchInformationTool(browser),
    VisitTool(browser),
    PageUpTool(browser),
    PageDownTool(browser),
    FinderTool(browser),
    FindNextTool(browser),
    ArchiveSearchTool(browser),
    TextInspectorTool(model, text_limit),
]

agent = CodeAgent(
    model=model,
    tools=[visualizer] + WEB_TOOLS,
    max_steps=5,
    verbosity_level=2,
    additional_authorized_imports=AUTHORIZED_IMPORTS,
    planning_interval=4,
)

document_inspection_tool = TextInspectorTool(model, 20000)


# augmented_question = """You have one question to answer. It is paramount that you provide a correct answer.
# Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded.
# Run verification steps if that's needed, you must make sure you find the correct answer!
# Here is the task:
# """ + example["question"]

# if example["file_name"]:
#     prompt_use_files = "\n\nTo solve the task above, you will have to use this attached file:"
#     prompt_use_files += get_single_file_description(
#         example["file_name"], example["question"], visual_inspection_tool, document_inspection_tool
#     )
#     augmented_question += prompt_use_files


# final_result = agent.run(augmented_question)


def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        for message in pull_messages_from_step(
            step_log,
        ):
            yield message

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, agent, file_upload_folder: str | None = None):
        self.agent = agent
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)

    def interact_with_agent(self, prompt, messages):
        messages.append(gr.ChatMessage(role="user", content=prompt))
        yield messages
        for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
            messages.append(msg)
            yield messages
        yield messages

    def upload_file(
        self,
        file,
        file_uploads_log,
        allowed_file_types=[
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain",
        ],
    ):
        """
        Handle file uploads, default allowed types are .pdf, .docx, and .txt
        """
        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        # Ensure the extension correlates to the mime type
        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        # Save the uploaded file to the specified folder
        file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        return (
            text_input
            + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0
                else ""
            ),
            "",
        )

    def launch(self, **kwargs):
        with gr.Blocks(theme="ocean", fill_height=True) as demo:
            gr.Markdown("""# open Deep Research - free the AI agents!
            
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.

However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨

You can try a simplified version below. πŸ‘‡""")
            stored_messages = gr.State([])
            file_uploads_log = gr.State([])
            chatbot = gr.Chatbot(
                label="open-Deep-Research",
                type="messages",
                avatar_images=(
                    None,
                    "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                ),
                resizeable=True,
                scale=1,
            )
            # If an upload folder is provided, enable the upload feature
            if self.file_upload_folder is not None:
                upload_file = gr.File(label="Upload a file")
                upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
                upload_file.change(
                    self.upload_file,
                    [upload_file, file_uploads_log],
                    [upload_status, file_uploads_log],
                )
            text_input = gr.Textbox(lines=1, label="Your request")
            text_input.submit(
                self.log_user_message,
                [text_input, file_uploads_log],
                [stored_messages, text_input],
            ).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])

        demo.launch(debug=True, share=True, **kwargs)

GradioUI(agent).launch()