Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import spaces | |
os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download') | |
HF_TOKEN = os.environ['hf_token'] if 'hf_token' in os.environ else None | |
import uuid | |
import time | |
import torch | |
import numpy as np | |
import gradio as gr | |
import tempfile | |
gradio_temp_dir = os.path.join(tempfile.gettempdir(), 'gradio') | |
os.makedirs(gradio_temp_dir, exist_ok=True) | |
from threading import Thread | |
# Phi3 Hijack | |
from transformers.models.phi3.modeling_phi3 import Phi3PreTrainedModel | |
Phi3PreTrainedModel._supports_sdpa = True | |
from PIL import Image | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from lib_omost.pipeline import StableDiffusionXLOmostPipeline | |
from chat_interface import ChatInterface | |
from transformers.generation.stopping_criteria import StoppingCriteriaList | |
import lib_omost.canvas as omost_canvas | |
# SDXL | |
sdxl_name = 'SG161222/RealVisXL_V4.0' | |
# sdxl_name = 'stabilityai/stable-diffusion-xl-base-1.0' | |
tokenizer = CLIPTokenizer.from_pretrained( | |
sdxl_name, subfolder="tokenizer") | |
tokenizer_2 = CLIPTokenizer.from_pretrained( | |
sdxl_name, subfolder="tokenizer_2") | |
text_encoder = CLIPTextModel.from_pretrained( | |
sdxl_name, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16", device_map="auto") | |
text_encoder_2 = CLIPTextModel.from_pretrained( | |
sdxl_name, subfolder="text_encoder_2", torch_dtype=torch.float16, variant="fp16", device_map="auto") | |
vae = AutoencoderKL.from_pretrained( | |
sdxl_name, subfolder="vae", torch_dtype=torch.bfloat16, variant="fp16", device_map="auto") # bfloat16 vae | |
unet = UNet2DConditionModel.from_pretrained( | |
sdxl_name, subfolder="unet", torch_dtype=torch.float16, variant="fp16", device_map="auto") | |
unet.set_attn_processor(AttnProcessor2_0()) | |
vae.set_attn_processor(AttnProcessor2_0()) | |
pipeline = StableDiffusionXLOmostPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
text_encoder_2=text_encoder_2, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=None, # We completely give up diffusers sampling system and use A1111's method | |
) | |
# LLM | |
# model_name = 'lllyasviel/omost-phi-3-mini-128k' | |
llm_name = 'lllyasviel/omost-llama-3-8b' | |
# model_name = 'lllyasviel/omost-dolphin-2.9-llama3-8b' | |
llm_model = AutoModelForCausalLM.from_pretrained( | |
llm_name, | |
torch_dtype="auto", | |
token=HF_TOKEN, | |
device_map="auto", | |
trust_remote_code=True, | |
) | |
llm_tokenizer = AutoTokenizer.from_pretrained( | |
llm_name, | |
token=HF_TOKEN | |
) | |
def pytorch2numpy(imgs): | |
results = [] | |
for x in imgs: | |
y = x.movedim(0, -1) | |
y = y * 127.5 + 127.5 | |
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
results.append(y) | |
return results | |
def numpy2pytorch(imgs): | |
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0 | |
h = h.movedim(-1, 1) | |
return h | |
def resize_without_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
return np.array(resized_image) | |
def chat_fn(message: str, history: list, seed:int, temperature: float, top_p: float, max_new_tokens: int) -> str: | |
print('Chat begin:', message) | |
time_stamp = time.time() | |
np.random.seed(int(seed)) | |
torch.manual_seed(int(seed)) | |
conversation = [{"role": "system", "content": omost_canvas.system_prompt}] | |
for user, assistant in history: | |
if isinstance(user, str) and isinstance(assistant, str): | |
if len(user) > 0 and len(assistant) > 0: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = llm_tokenizer.apply_chat_template( | |
conversation, return_tensors="pt", add_generation_prompt=True).to(llm_model.device) | |
streamer = TextIteratorStreamer(llm_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
def interactive_stopping_criteria(*args, **kwargs) -> bool: | |
if getattr(streamer, 'user_interrupted', False): | |
print('User stopped generation:', message) | |
return True | |
else: | |
return False | |
stopping_criteria = StoppingCriteriaList([interactive_stopping_criteria]) | |
def interrupter(): | |
streamer.user_interrupted = True | |
return | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
stopping_criteria=stopping_criteria, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
if temperature == 0: | |
generate_kwargs['do_sample'] = False | |
Thread(target=llm_model.generate, kwargs=generate_kwargs).start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
# print(outputs) | |
yield "".join(outputs), None | |
print(f'Chat end at {time.time() - time_stamp:.2f} seconds:', message) | |
return | |
def post_chat(history): | |
canvas_outputs = None | |
try: | |
if history: | |
history = [(user, assistant) for user, assistant in history if isinstance(user, str) and isinstance(assistant, str)] | |
last_assistant = history[-1][1] if len(history) > 0 else None | |
canvas = omost_canvas.Canvas.from_bot_response(last_assistant) | |
canvas_outputs = canvas.process() | |
except Exception as e: | |
print('Last assistant response is not valid canvas:', e) | |
return canvas_outputs, gr.update(visible=canvas_outputs is not None), gr.update(interactive=len(history) > 0) | |
def diffusion_fn(chatbot, canvas_outputs, num_samples, seed, image_width, image_height, | |
highres_scale, steps, cfg, highres_steps, highres_denoise, negative_prompt): | |
use_initial_latent = False | |
eps = 0.05 | |
image_width, image_height = int(image_width // 64) * 64, int(image_height // 64) * 64 | |
rng = torch.Generator(unet.device).manual_seed(seed) | |
positive_cond, positive_pooler, negative_cond, negative_pooler = pipeline.all_conds_from_canvas(canvas_outputs, negative_prompt) | |
if use_initial_latent: | |
initial_latent = torch.from_numpy(canvas_outputs['initial_latent'])[None].movedim(-1, 1) / 127.5 - 1.0 | |
initial_latent_blur = 40 | |
initial_latent = torch.nn.functional.avg_pool2d( | |
torch.nn.functional.pad(initial_latent, (initial_latent_blur,) * 4, mode='reflect'), | |
kernel_size=(initial_latent_blur * 2 + 1,) * 2, stride=(1, 1)) | |
initial_latent = torch.nn.functional.interpolate(initial_latent, (image_height, image_width)) | |
initial_latent = initial_latent.to(dtype=vae.dtype, device=vae.device) | |
initial_latent = vae.encode(initial_latent).latent_dist.mode() * vae.config.scaling_factor | |
else: | |
initial_latent = torch.zeros(size=(num_samples, 4, image_height // 8, image_width // 8), dtype=torch.float32) | |
initial_latent = initial_latent.to(dtype=unet.dtype, device=unet.device) | |
latents = pipeline( | |
initial_latent=initial_latent, | |
strength=1.0, | |
num_inference_steps=int(steps), | |
batch_size=num_samples, | |
prompt_embeds=positive_cond, | |
negative_prompt_embeds=negative_cond, | |
pooled_prompt_embeds=positive_pooler, | |
negative_pooled_prompt_embeds=negative_pooler, | |
generator=rng, | |
guidance_scale=float(cfg), | |
).images | |
latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
B, C, H, W = pixels.shape | |
pixels = pytorch2numpy(pixels) | |
if highres_scale > 1.0 + eps: | |
pixels = [ | |
resize_without_crop( | |
image=p, | |
target_width=int(round(W * highres_scale / 64.0) * 64), | |
target_height=int(round(H * highres_scale / 64.0) * 64) | |
) for p in pixels | |
] | |
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) | |
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor | |
latents = latents.to(device=unet.device, dtype=unet.dtype) | |
latents = pipeline( | |
initial_latent=latents, | |
strength=highres_denoise, | |
num_inference_steps=highres_steps, | |
batch_size=num_samples, | |
prompt_embeds=positive_cond, | |
negative_prompt_embeds=negative_cond, | |
pooled_prompt_embeds=positive_pooler, | |
negative_pooled_prompt_embeds=negative_pooler, | |
generator=rng, | |
guidance_scale=float(cfg), | |
).images | |
latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels) | |
for i in range(len(pixels)): | |
unique_hex = uuid.uuid4().hex | |
image_path = os.path.join(gradio_temp_dir, f"{unique_hex}_{i}.png") | |
image = Image.fromarray(pixels[i]) | |
image.save(image_path) | |
chatbot = chatbot + [(None, (image_path, 'image'))] | |
return chatbot | |
css = ''' | |
code {white-space: pre-wrap !important;} | |
.gradio-container {max-width: none !important;} | |
.outer_parent {flex: 1;} | |
.inner_parent {flex: 1;} | |
footer {display: none !important; visibility: hidden !important;} | |
.translucent {display: none !important; visibility: hidden !important;} | |
''' | |
from gradio.themes.utils import colors | |
with gr.Blocks( | |
fill_height=True, css=css, | |
theme=gr.themes.Default(primary_hue=colors.blue, secondary_hue=colors.cyan, neutral_hue=colors.gray) | |
) as demo: | |
with gr.Row(elem_classes='outer_parent'): | |
with gr.Column(scale=25): | |
with gr.Row(): | |
clear_btn = gr.Button("➕ New Chat", variant="secondary", size="sm", min_width=60) | |
retry_btn = gr.Button("Retry", variant="secondary", size="sm", min_width=60, visible=False) | |
undo_btn = gr.Button("✏️️ Edit Last Input", variant="secondary", size="sm", min_width=60, interactive=False) | |
seed = gr.Number(label="Random Seed", value=123456, precision=0) | |
with gr.Accordion(open=True, label='Language Model'): | |
with gr.Group(): | |
with gr.Row(): | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.01, | |
value=0.6, | |
label="Temperature") | |
top_p = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.9, | |
label="Top P") | |
max_new_tokens = gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=4096, | |
label="Max New Tokens") | |
with gr.Accordion(open=True, label='Image Diffusion Model'): | |
with gr.Group(): | |
with gr.Row(): | |
image_width = gr.Slider(label="Image Width", minimum=256, maximum=2048, value=896, step=64) | |
image_height = gr.Slider(label="Image Height", minimum=256, maximum=2048, value=1152, step=64) | |
with gr.Row(): | |
num_samples = gr.Slider(label="Image Number", minimum=1, maximum=12, value=1, step=1) | |
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=100, value=25, step=1) | |
with gr.Accordion(open=False, label='Advanced'): | |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=5.0, step=0.01) | |
highres_scale = gr.Slider(label="HR-fix Scale (\"1\" is disabled)", minimum=1.0, maximum=2.0, value=1.0, step=0.01) | |
highres_steps = gr.Slider(label="Highres Fix Steps", minimum=1, maximum=100, value=20, step=1) | |
highres_denoise = gr.Slider(label="Highres Fix Denoise", minimum=0.1, maximum=1.0, value=0.4, step=0.01) | |
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
render_button = gr.Button("Render the Image!", size='lg', variant="primary", visible=False) | |
examples = gr.Dataset( | |
samples=[ | |
['generate an image of the fierce battle of warriors and the dragon'], | |
['change the dragon to a dinosaur'] | |
], | |
components=[gr.Textbox(visible=False)], | |
label='Quick Prompts' | |
) | |
with gr.Row(): | |
gr.Markdown("Omost: converting LLM's coding capability to image compositing capability.") | |
with gr.Row(): | |
gr.Markdown("Local version (8GB VRAM): https://github.com/lllyasviel/Omost") | |
# with gr.Row(): | |
# gr.Markdown("Hint: You can [duplicate this space](https://huggingface.co./spaces/lllyasviel/Omost?duplicate=true) to your private account to bypass the waiting queue.") | |
with gr.Column(scale=75, elem_classes='inner_parent'): | |
canvas_state = gr.State(None) | |
chatbot = gr.Chatbot(label='Omost', scale=1, show_copy_button=True, layout="panel", render=False) | |
chatInterface = ChatInterface( | |
fn=chat_fn, | |
post_fn=post_chat, | |
post_fn_kwargs=dict(inputs=[chatbot], outputs=[canvas_state, render_button, undo_btn]), | |
pre_fn=lambda: gr.update(visible=False), | |
pre_fn_kwargs=dict(outputs=[render_button]), | |
chatbot=chatbot, | |
retry_btn=retry_btn, | |
undo_btn=undo_btn, | |
clear_btn=clear_btn, | |
additional_inputs=[seed, temperature, top_p, max_new_tokens], | |
examples=examples, | |
show_stop_button=False | |
) | |
render_button.click( | |
fn=diffusion_fn, inputs=[ | |
chatInterface.chatbot, canvas_state, | |
num_samples, seed, image_width, image_height, highres_scale, | |
steps, cfg, highres_steps, highres_denoise, n_prompt | |
], outputs=[chatInterface.chatbot]).then( | |
fn=lambda x: x, inputs=[ | |
chatInterface.chatbot | |
], outputs=[chatInterface.chatbot_state]) | |
if __name__ == "__main__": | |
demo.queue().launch() | |