|
import gradio as gr |
|
|
|
import logging |
|
numba_logger = logging.getLogger('numba') |
|
numba_logger.setLevel(logging.WARNING) |
|
import torch,pdb |
|
import numpy as np |
|
from models import SynthesizerTrnNoF0256 |
|
from fairseq import checkpoint_utils |
|
import torch.nn.functional as F |
|
import librosa |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model_path = "checkpoint_best_legacy_500.pt" |
|
print("load model(s) from {}".format(model_path)) |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
[model_path], |
|
suffix="", |
|
) |
|
model = models[0] |
|
model = model.to(device) |
|
model.eval() |
|
|
|
net_g = SynthesizerTrnNoF0256(513,40,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,4,2,2,2],512,[16,16,4,4,4],0) |
|
weights=torch.load("trump.pt", map_location=torch.device('cpu')) |
|
net_g.load_state_dict(weights,strict=True) |
|
net_g.eval().to(device) |
|
|
|
|
|
def vc_fn( input_audio): |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
sampling_rate, audio = input_audio |
|
duration = audio.shape[0] / sampling_rate |
|
if duration > 45: |
|
return "请上传小于45s的音频,需要转换长音频请使用colab", None |
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != 16000: |
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) |
|
|
|
print(audio.shape) |
|
|
|
feats = torch.from_numpy(audio).float() |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
inputs = { |
|
"source": feats.to(device), |
|
"padding_mask": padding_mask.to(device), |
|
"output_layer": 9, |
|
} |
|
with torch.no_grad(): |
|
logits = model.extract_features(**inputs) |
|
feats = model.final_proj(logits[0]) |
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) |
|
p_len = min(feats.shape[1], 10000) |
|
feats = feats[:, :p_len, :] |
|
p_len = torch.LongTensor([p_len]).to(device) |
|
with torch.no_grad(): |
|
audio = net_g.infer(feats, p_len)[0][0, 0].data.cpu().float().numpy() |
|
|
|
return "Success", (32000, audio) |
|
|
|
|
|
app = gr.Blocks() |
|
with app: |
|
with gr.Tabs(): |
|
with gr.TabItem("Basic"): |
|
gr.Markdown(value="""""") |
|
vc_input3 = gr.Audio(label="上传音频(长度小于45秒)") |
|
vc_submit = gr.Button("转换", variant="primary") |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
vc_output2 = gr.Audio(label="Output Audio") |
|
vc_submit.click(vc_fn, [ vc_input3], [vc_output1, vc_output2]) |
|
|
|
app.launch() |