litagin's picture
Change ngram 5
7a1d956
import os
import time
import warnings
from pathlib import Path
import gradio as gr
import librosa
import spaces
import torch
from loguru import logger
from transformers import pipeline
warnings.filterwarnings("ignore")
is_hf = os.getenv("SYSTEM") == "spaces"
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 5,
"max_new_tokens": 64,
}
model_dict = {
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
"anime-whisper": "litagin/anime-whisper",
}
logger.info("Initializing pipelines...")
pipe_dict = {
k: pipeline(
"automatic-speech-recognition",
model=v,
device="cuda" if torch.cuda.is_available() else "cpu",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
)
for k, v in model_dict.items()
}
logger.success("Pipelines initialized!")
@spaces.GPU
def transcribe_common(audio: str, model: str) -> str:
if not audio:
return "No audio file"
filename = Path(audio).name
logger.info(f"Model: {model}")
logger.info(f"Audio: {filename}")
# Read and resample audio to 16kHz
try:
y, sr = librosa.load(audio, mono=True, sr=16000)
except Exception as e:
# First convert to wav if librosa cannot read the file
logger.error(f"Error reading file: {e}")
from pydub import AudioSegment
audio = AudioSegment.from_file(audio)
audio.export("temp.wav", format="wav")
y, sr = librosa.load("temp.wav", mono=True, sr=16000)
Path("temp.wav").unlink()
# Get duration of audio
duration = librosa.get_duration(y=y, sr=sr)
logger.info(f"Duration: {duration:.2f}s")
if duration > 15:
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s"
start_time = time.time()
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
end_time = time.time()
logger.success(f"Finished in {end_time - start_time:.2f}s\n{result}")
return result
def transcribe_others(audio) -> tuple[str, str]:
result_v3 = transcribe_common(audio, "whisper-large-v3-turbo")
result_kotoba_v2 = transcribe_common(audio, "kotoba-whisper-v2.0")
return result_v3, result_kotoba_v2
def transcribe_anime_whisper(audio) -> str:
return transcribe_common(audio, "anime-whisper")
initial_md = """
# Anime-Whisper Demo
[**Anime Whisper**](https://huggingface.co./litagin/anime-whisper): 5千時間以上のアニメ調セリフと台本でファインチューニングされた日本語音声認識モデルのデモです。句読点や感嘆符がリズムや感情に合わせて自然に付き、NSFW含む非言語発話もうまく台本調に書き起こされます。
- デモでは**音声は15秒まで**しか受け付けません
- 日本語のみ対応 (Japanese only)
- 比較のために [openai/whisper-large-v3-turbo](https://huggingface.co./openai/whisper-large-v3-turbo) と [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co./kotoba-tech/kotoba-whisper-v2.0) も用意しています
pipeに渡しているkwargsは以下:
```python
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 5,
"max_new_tokens": 64, # 結果が長いときは途中で打ち切られる
}
```
"""
with gr.Blocks() as app:
gr.Markdown(initial_md)
audio = gr.Audio(type="filepath")
with gr.Row():
with gr.Column():
gr.Markdown("### Anime-Whisper")
button_galgame = gr.Button("Transcribe with Anime-Whisper")
output_galgame = gr.Textbox(label="Result")
gr.Markdown("### Comparison")
button_others = gr.Button("Transcribe with other models")
with gr.Row():
with gr.Column():
gr.Markdown("### Whisper-Large-V3-Turbo")
output_v3 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V2.0")
output_kotoba_v2 = gr.Textbox(label="Result")
button_galgame.click(
transcribe_anime_whisper,
inputs=[audio],
outputs=[output_galgame],
)
button_others.click(
transcribe_others,
inputs=[audio],
outputs=[output_v3, output_kotoba_v2],
)
app.launch(inbrowser=True)