File size: 37,519 Bytes
744c933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
from enum import IntEnum
from functools import partial
import einops
import numpy as np
import torch

from contextlib import nullcontext
import torch
import torch.nn as nn
from transformers import CLIPTextModelWithProjection
import copy
from transformers import T5ForConditionalGeneration
from transformers.modeling_outputs import BaseModelOutput
import torch.nn.functional as F

def get_mlp_head(input_size, hidden_size, output_size, dropout=0):
    return nn.Sequential(*[
        nn.Linear(input_size, hidden_size),
        nn.ReLU(),
        nn.LayerNorm(hidden_size, eps=1e-12),
        nn.Dropout(dropout),
        nn.Linear(hidden_size, output_size)
    ])

def layer_repeat(module, N, share_layer=False):
    if share_layer:
        return nn.ModuleList([module] * N)
    else:
        return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module])

class CLIPLanguageEncoder(nn.Module):
    def __init__(self, weights="openai/clip-vit-large-patch14", output_dim=768, freeze_backbone=True, use_projection=False, projection_type='mlp', num_projection_layers=1, dropout=0.1):
        super().__init__()
        self.context = torch.no_grad if freeze_backbone else nullcontext
        self.model = CLIPTextModelWithProjection.from_pretrained(weights)
        self.use_projection = use_projection
        self.projection_type = projection_type
        if use_projection:
            if projection_type == 'mlp':
                self.projection = get_mlp_head(self.model.config.hidden_size, output_dim, output_dim, dropout=dropout)
            else:
                raise NotImplementedError
        #self.attention = nn.MultiheadAttention(embed_dim=768, num_heads=12, batch_first=True)
        
    def forward(self, txt_ids, txt_masks):
        with self.context():
            txt = self.model(txt_ids, txt_masks).last_hidden_state
            txt = self.model.text_projection(txt)
            txt = torch.nn.functional.normalize(txt, p=2, dim=2)
        #txt = self.attention(txt, txt, txt, key_padding_mask=txt_masks.logical_not())[0]
        if self.use_projection:
            if self.projection_type == 'mlp':
                txt = self.projection(txt)
            elif self.projection_type == 'attention':
                for attention_layer in self.projection:
                    txt = attention_layer(txt, tgt_key_padding_mask = txt_masks.logical_not())
            else:
                raise NotImplementedError
        return txt

def _init_weights_bert(module, std=0.02):
    """
        Huggingface transformer weight initialization,
        most commonly for bert initialization
    """
    if isinstance(module, nn.Linear):
        # Slightly different from the TF version which uses truncated_normal for initialization
        # cf https://github.com/pytorch/pytorch/pull/5617
        module.weight.data.normal_(mean=0.0, std=std)
        if module.bias is not None:
            module.bias.data.zero_()
    elif isinstance(module, nn.Embedding):
        module.weight.data.normal_(mean=0.0, std=std)
        if module.padding_idx is not None:
            module.weight.data[module.padding_idx].zero_()
    elif isinstance(module, nn.LayerNorm):
        module.bias.data.zero_()
        module.weight.data.fill_(1.0)
        

def break_up_pc(pc):
    """
    Split the pointcloud into xyz positions and features tensors.
    This method is taken from VoteNet codebase (https://github.com/facebookresearch/votenet)

    @param pc: pointcloud [N, 3 + C]
    :return: the xyz tensor and the feature tensor
    """
    xyz = pc[..., 0:3].contiguous()
    features = (
        pc[..., 3:].transpose(1, 2).contiguous()
        if pc.size(-1) > 3 else None
    )
    return xyz, features
    
class ObjectEncoder(nn.Module):
    def __init__(self, backbone='none', input_feat_size=768, hidden_size=768, freeze_backbone=False, use_projection=False,
                 tgt_cls_num=607, pretrained=None, dropout=0.1, use_cls_head=True):
        super().__init__()
        self.freeze_backbone = freeze_backbone
        self.context = torch.no_grad if freeze_backbone else nullcontext
        # if backbone == 'pointnet++':
        #     self.backbone = PointNetPP(
        #         sa_n_points=[32, 16, None],
        #         sa_n_samples=[32, 32, None],
        #         sa_radii=[0.2, 0.4, None],
        #         sa_mlps=[[3, 64, 64, 128], [128, 128, 128, 256], [256, 256, 512, 768]],
        #     )
        if use_cls_head:
            self.cls_head = get_mlp_head(input_feat_size, input_feat_size // 2, tgt_cls_num, dropout=0.3)

        self.use_projection = use_projection
        if use_projection:
            self.input_feat_proj = nn.Sequential(nn.Linear(input_feat_size, hidden_size), nn.LayerNorm(hidden_size))
        else:
            assert input_feat_size == hidden_size, "input_feat_size should be equal to hidden_size!"
        if dropout > 0:
            self.dropout = nn.Dropout(dropout)

        # load weights
        self.apply(_init_weights_bert)
        if pretrained:
            print("load pretrained weights from {}".format(pretrained))
            pre_state_dict = torch.load(pretrained)
            state_dict = {}
            for k, v in pre_state_dict.items():
                if k[0] in ['0', '2', '4']: # key mapping for voxel
                    k = 'cls_head.' + k
                k = k.replace('vision_encoder.vis_cls_head.', 'cls_head.') # key mapping for mv
                k = k.replace('point_cls_head.', 'cls_head.') # key mapping for pc 
                k = k.replace('point_feature_extractor.', 'backbone.')
                state_dict[k] = v
            warning = self.load_state_dict(state_dict, strict=False)
            print(warning)

    def freeze_bn(self, m):
        for layer in m.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.eval()

    def forward(self, obj_feats, **kwargs):
        if self.freeze_backbone and hasattr(self, 'backbone'):
            self.freeze_bn(self.backbone)

        batch_size, num_objs  = obj_feats.shape[:2]
        with self.context():
            if hasattr(self, 'backbone'):
                obj_feats = self.backbone(einops.rearrange(obj_feats, 'b o p d -> (b o) p d'))
                obj_feats = einops.rearrange(obj_feats, '(b o) d -> b o d', b=batch_size)

        obj_embeds = self.input_feat_proj(obj_feats) if self.use_projection else obj_feats
        if hasattr(self, 'dropout'):
            obj_embeds = self.dropout(obj_embeds)

        if hasattr(self, 'cls_head'):
            obj_cls_logits = self.cls_head(obj_feats)
            return obj_embeds, obj_cls_logits
        else:
            return obj_embeds

class SelfAttentionLayer(nn.Module):
    def __init__(
        self,
        d_model,
        nhead,
        dropout=0.0,
        activation="relu",
        normalize_before=False,
        batch_first=False,
    ):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_post(
        self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None
    ):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(
            q,
            k,
            value=tgt,
            attn_mask=attn_mask,
            key_padding_mask=tgt_key_padding_mask,
        )[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)

        return tgt

    def forward_pre(
        self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None
    ):
        tgt2 = self.norm(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(
            q,
            k,
            value=tgt2,
            attn_mask=attn_mask,
            key_padding_mask=tgt_key_padding_mask,
        )[0]
        tgt = tgt + self.dropout(tgt2)

        return tgt

    def forward(
        self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None
    ):
        if self.normalize_before:
            return self.forward_pre(
                tgt, attn_mask, tgt_key_padding_mask, query_pos
            )
        return self.forward_post(
            tgt, attn_mask, tgt_key_padding_mask, query_pos
        )


class CrossAttentionLayer(nn.Module):
    def __init__(
        self,
        d_model,
        nhead,
        dropout=0.0,
        activation="relu",
        normalize_before=False,
        batch_first=False,
    ):
        super().__init__()
        self.multihead_attn = nn.MultiheadAttention(
            d_model, nhead, dropout=dropout, batch_first=batch_first, add_zero_attn=True
        )

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_post(
        self,
        tgt,
        memory,
        attn_mask=None,
        memory_key_padding_mask=None,
        pos=None,
        query_pos=None,
    ):
        tgt2 = self.multihead_attn(
            query=self.with_pos_embed(tgt, query_pos),
            key=self.with_pos_embed(memory, pos),
            value=memory,
            attn_mask=attn_mask,
            key_padding_mask=memory_key_padding_mask,
        )[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)

        return tgt

    def forward_pre(
        self,
        tgt,
        memory,
        attn_mask=None,
        memory_key_padding_mask=None,
        pos=None,
        query_pos=None,
    ):
        tgt2 = self.norm(tgt)

        tgt2 = self.multihead_attn(
            query=self.with_pos_embed(tgt2, query_pos),
            key=self.with_pos_embed(memory, pos),
            value=memory,
            attn_mask=attn_mask,
            key_padding_mask=memory_key_padding_mask,
        )[0]
        tgt = tgt + self.dropout(tgt2)

        return tgt

    def forward(
        self,
        tgt,
        memory,
        attn_mask=None,
        memory_key_padding_mask=None,
        pos=None,
        query_pos=None,
    ):
        if self.normalize_before:
            return self.forward_pre(
                tgt,
                memory,
                attn_mask,
                memory_key_padding_mask,
                pos,
                query_pos,
            )
        return self.forward_post(
            tgt, memory, attn_mask, memory_key_padding_mask, pos, query_pos
        )


class FFNLayer(nn.Module):
    def __init__(
        self,
        d_model,
        dim_feedforward=2048,
        dropout=0.0,
        activation="relu",
        normalize_before=False,
    ):
        super().__init__()
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm = nn.LayerNorm(d_model)

        self.activation = get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt):
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        return tgt

    def forward_pre(self, tgt):
        tgt2 = self.norm(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout(tgt2)
        return tgt

    def forward(self, tgt):
        if self.normalize_before:
            return self.forward_pre(tgt)
        return self.forward_post(tgt)
    
def get_activation_fn(activation_type):
    if activation_type not in ["relu", "gelu", "glu"]:
        raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}")
    return getattr(F, activation_type)

class MultiHeadAttentionSpatial(nn.Module):
    def __init__(
            self, d_model, n_head, dropout=0.1, spatial_multihead=True, spatial_dim=5,
            spatial_attn_fusion='mul',
    ):
        super().__init__()
        assert d_model % n_head == 0, 'd_model: %d, n_head: %d' % (d_model, n_head)

        self.n_head = n_head
        self.d_model = d_model
        self.d_per_head = d_model // n_head
        self.spatial_multihead = spatial_multihead
        self.spatial_dim = spatial_dim
        self.spatial_attn_fusion = spatial_attn_fusion

        self.w_qs = nn.Linear(d_model, d_model)
        self.w_ks = nn.Linear(d_model, d_model)
        self.w_vs = nn.Linear(d_model, d_model)

        self.fc = nn.Linear(d_model, d_model)

        self.spatial_n_head = n_head if spatial_multihead else 1
        if self.spatial_attn_fusion in ['mul', 'bias', 'add']:
            self.pairwise_loc_fc = nn.Linear(spatial_dim, self.spatial_n_head)
        elif self.spatial_attn_fusion == 'ctx':
            self.pairwise_loc_fc = nn.Linear(spatial_dim, d_model)
        elif self.spatial_attn_fusion == 'cond':
            self.lang_cond_fc = nn.Linear(d_model, self.spatial_n_head * (spatial_dim + 1))
        else:
            raise NotImplementedError('unsupported spatial_attn_fusion %s' % (self.spatial_attn_fusion))

    def forward(self, q, k, v, pairwise_locs, key_padding_mask=None, txt_embeds=None):
        residual = q
        q = einops.rearrange(self.w_qs(q), 'b l (head k) -> head b l k', head=self.n_head)
        k = einops.rearrange(self.w_ks(k), 'b t (head k) -> head b t k', head=self.n_head)
        v = einops.rearrange(self.w_vs(v), 'b t (head v) -> head b t v', head=self.n_head)
        attn = torch.einsum('hblk,hbtk->hblt', q, k) / np.sqrt(q.shape[-1])

        if self.spatial_attn_fusion in ['mul', 'bias', 'add']:
            loc_attn = self.pairwise_loc_fc(pairwise_locs)
            loc_attn = einops.rearrange(loc_attn, 'b l t h -> h b l t')
            if self.spatial_attn_fusion == 'mul':
                loc_attn = F.relu(loc_attn)
            if not self.spatial_multihead:
                loc_attn = einops.repeat(loc_attn, 'h b l t -> (h nh) b l t', nh=self.n_head)
        elif self.spatial_attn_fusion == 'ctx':
            loc_attn = self.pairwise_loc_fc(pairwise_locs)
            loc_attn = einops.rearrange(loc_attn, 'b l t (h k) -> h b l t k', h=self.n_head)
            loc_attn = torch.einsum('hblk,hbltk->hblt', q, loc_attn) / np.sqrt(q.shape[-1])
        elif self.spatial_attn_fusion == 'cond':
            spatial_weights = self.lang_cond_fc(residual)
            spatial_weights = einops.rearrange(spatial_weights, 'b l (h d) -> h b l d', h=self.spatial_n_head,
                                               d=self.spatial_dim + 1)
            if self.spatial_n_head == 1:
                spatial_weights = einops.repeat(spatial_weights, '1 b l d -> h b l d', h=self.n_head)
            spatial_bias = spatial_weights[..., :1]
            spatial_weights = spatial_weights[..., 1:]
            loc_attn = torch.einsum('hbld,bltd->hblt', spatial_weights, pairwise_locs) + spatial_bias
            loc_attn = torch.sigmoid(loc_attn)

        if key_padding_mask is not None:
            mask = einops.repeat(key_padding_mask, 'b t -> h b l t', h=self.n_head, l=q.size(2))
            attn = attn.masked_fill(mask, -np.inf)
            if self.spatial_attn_fusion in ['mul', 'cond']:
                loc_attn = loc_attn.masked_fill(mask, 0)
            else:
                loc_attn = loc_attn.masked_fill(mask, -np.inf)

        if self.spatial_attn_fusion == 'add':
            fused_attn = (torch.softmax(attn, 3) + torch.softmax(loc_attn, 3)) / 2
        else:
            if self.spatial_attn_fusion in ['mul', 'cond']:
                fused_attn = torch.log(torch.clamp(loc_attn, min=1e-6)) + attn
            else:
                fused_attn = loc_attn + attn
            fused_attn = torch.softmax(fused_attn, 3)

        assert torch.sum(torch.isnan(fused_attn) == 0), print(fused_attn)

        output = torch.einsum('hblt,hbtv->hblv', fused_attn, v)
        output = einops.rearrange(output, 'head b l v -> b l (head v)')
        output = self.fc(output)
        return output, fused_attn
    
class SpatialSelfAttentionLayer(nn.Module):
    def __init__(
        self,
        d_model,
        nhead,
        dropout=0.0,
        activation="relu",
        normalize_before=False,
        batch_first=False,
        spatial_multihead=True, spatial_dim=5, spatial_attn_fusion='mul'
    ):
        super().__init__()
        self.self_attn = MultiHeadAttentionSpatial(
            d_model, nhead, dropout=dropout,
            spatial_multihead=spatial_multihead,
            spatial_dim=spatial_dim,
            spatial_attn_fusion=spatial_attn_fusion,
        )

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos):
        return tensor if pos is None else tensor + pos

    def forward_post(
        self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None,
        pairwise_locs=None
    ):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(
            q,
            k,
            tgt,
            key_padding_mask=tgt_key_padding_mask,
            pairwise_locs=pairwise_locs,
        )[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)

        return tgt

    def forward_pre(
        self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None,
        pairwise_locs=None
    ):
        tgt2 = self.norm(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(
            q,
            k,
            tgt,
            key_padding_mask=tgt_key_padding_mask,
            pairwise_locs=pairwise_locs,
        )[0]
        tgt = tgt + self.dropout(tgt2)

        return tgt

    def forward(
        self, tgt, attn_mask=None, tgt_key_padding_mask=None, query_pos=None,
        pairwise_locs=None
    ):
        if self.normalize_before:
            return self.forward_pre(
                tgt, attn_mask, tgt_key_padding_mask, query_pos,
                pairwise_locs
            )
        return self.forward_post(
            tgt, attn_mask, tgt_key_padding_mask, query_pos,
            pairwise_locs
        )
        
class QueryEncoderLayer(nn.Module):
    def __init__(self, d_model, nhead, memories, dim_feedforward=2048, dropout=0.1, activation="relu", prenorm=False, spatial_selfattn=False, structure='mixed', memory_dropout=0, drop_memories_test=[]):
        super().__init__()
        if spatial_selfattn:
            self.self_attn = SpatialSelfAttentionLayer(d_model, nhead, dropout=dropout, activation=activation, normalize_before=prenorm, batch_first=True)
        else:
            self.self_attn = SelfAttentionLayer(d_model, nhead, dropout=dropout, activation=activation, normalize_before=prenorm, batch_first=True)
        cross_attn_layer = CrossAttentionLayer(d_model, nhead, dropout=dropout, activation=activation, normalize_before=prenorm, batch_first=True) 
        self.cross_attn_list = layer_repeat(cross_attn_layer, len(memories))
        self.memory2ca = {memory:ca for memory, ca in zip(memories, self.cross_attn_list)}
        self.ffn = FFNLayer(d_model, dim_feedforward, dropout=dropout, activation=activation, normalize_before=prenorm)
        self.structure = structure
        self.memories = memories
        self.memory_dropout = memory_dropout
        self.drop_memories_test = drop_memories_test
        if structure == 'gate':
            self.gate_proj = nn.Linear(d_model, d_model)

    def forward(self, query, input_dict, pairwise_locs=None):
        _, query_masks, query_pos = input_dict['query']

        def sequential_ca(query, memories):
            for memory in memories:
                cross_attn = self.memory2ca[memory]
                feat, mask, pos = input_dict[memory] 
                if mask.ndim == 2:
                    memory_key_padding_mask = mask
                    attn_mask = None
                else:
                    memory_key_padding_mask = None
                    attn_mask = mask
                query = cross_attn(tgt=query, memory=feat, attn_mask=attn_mask, memory_key_padding_mask = memory_key_padding_mask, query_pos = query_pos, pos = pos)
            return query

        def parallel_ca(query, memories):
            assert 'prompt' not in memories
            query_list = []
            for memory in memories:
                cross_attn = self.memory2ca[memory]
                feat, mask, pos = input_dict[memory] 
                if mask.ndim == 2:
                    memory_key_padding_mask = mask
                    attn_mask = None
                else:
                    memory_key_padding_mask = None
                    attn_mask = mask
                update = cross_attn(tgt=query, memory=feat, attn_mask=attn_mask, memory_key_padding_mask = memory_key_padding_mask, query_pos = query_pos, pos = pos)
                query_list.append(update)
            # training time memory dropout
            if self.training and self.memory_dropout > 0.0:
                dropout_mask = torch.rand(query.shape[0], len(memories), device=query.device) > self.memory_dropout
                num_remained_memories = dropout_mask.sum(dim=1)
                dropout_mask = torch.logical_or(dropout_mask, num_remained_memories.unsqueeze(-1) == 0)
                num_remained_memories = dropout_mask.sum(dim=1)
                query_tensor = torch.stack(query_list, dim=1)
                query = (query_tensor * dropout_mask.unsqueeze(-1).unsqueeze(-1)).sum(dim=1) / num_remained_memories.unsqueeze(-1).unsqueeze(-1).float()
            else:
                query = torch.stack(query_list, dim=1).mean(dim=1)
            return query
        
        memories = self.memories if self.training else [m for m in self.memories if m not in self.drop_memories_test]
        
        if self.structure == 'sequential':
            query = sequential_ca(query, memories)
        elif self.structure == 'parallel':
            query = parallel_ca(query, memories)
        elif self.structure == 'mixed':
            # [mv,pc,vx] + prompt
            query = parallel_ca(query, [m for m in memories if m != 'prompt'])
            query = sequential_ca(query, ['prompt'])
        elif self.structure == 'gate':
            prompt = sequential_ca(query, ['prompt'])
            gate = torch.sigmoid(self.gate_proj(prompt))
            update = parallel_ca(query, [m for m in self.memories if m != 'prompt'])
            query = (1. - gate) * query + gate * update
        else:
            raise NotImplementedError(f"Unknow structure type: {self.structure}")

        if isinstance(self.self_attn, SpatialSelfAttentionLayer):
            query = self.self_attn(query, tgt_key_padding_mask = query_masks, query_pos = query_pos, 
                                   pairwise_locs = pairwise_locs)
        else:
            query = self.self_attn(query, tgt_key_padding_mask = query_masks, query_pos = query_pos)
        query = self.ffn(query)

        return query
    
class QueryMaskEncoder(nn.Module):
    def __init__(self, memories=[], memory_dropout=0.0, hidden_size=768, num_attention_heads=12, num_layers=4,
                share_layer=False, spatial_selfattn=False, structure='sequential', drop_memories_test=[], use_self_mask=False, num_blocks=1):
        super().__init__()

        self.spatial_selfattn = spatial_selfattn
        query_encoder_layer = QueryEncoderLayer(hidden_size, num_attention_heads, memories, spatial_selfattn=spatial_selfattn, structure=structure, memory_dropout=memory_dropout, drop_memories_test=drop_memories_test)
        self.unified_encoder = layer_repeat(query_encoder_layer, num_layers, share_layer)

        self.apply(_init_weights_bert)
        self.memory_dropout = memory_dropout
        self.scene_meomories = [x for x in memories if x != 'prompt']
        self.drop_memories_test = drop_memories_test
        self.use_self_mask = use_self_mask
        self.num_heads = num_attention_heads
        self.num_blocks = num_blocks

    def forward(self, input_dict, pairwise_locs, mask_head=None):
            
        predictions_class, predictions_mask = [], []
        
        query = input_dict['query'][0]
        voxel_feat = input_dict['voxel'][0] if 'voxel' in input_dict.keys() else None

        for block_counter in range(self.num_blocks):
            for i, layer in enumerate(self.unified_encoder):
                if mask_head is not None:
                    output_class, outputs_mask, attn_mask = mask_head(query)
                    predictions_class.append(output_class)
                    predictions_mask.append(outputs_mask)  
                if self.use_self_mask:
                    attn_mask[attn_mask.all(-1)] = False # prevent query to attend to no point
                    attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
                    for memory in input_dict.keys():
                        if memory in ['query', 'prompt']:
                            continue
                        input_dict[memory][1] = attn_mask
                        
                if isinstance(voxel_feat, list):
                    input_dict['voxel'][0] = voxel_feat[i]  # select voxel features from multi-scale
                query = layer(query, input_dict, pairwise_locs)

        return query, predictions_class, predictions_mask
    
class PromptType(IntEnum):
    TXT = 1
    IMAGE = 2
    LOC = 3

class GroundHead(nn.Module):
    def __init__(self, input_size=768, hidden_size=768, dropout=0.3):
        super().__init__()
        self.og3d_head = get_mlp_head(
            input_size, hidden_size,
            1, dropout=dropout
        )

    def forward(self, obj_embeds, obj_masks=None, **kwargs):
        og3d_logits = self.og3d_head(obj_embeds).squeeze(2)
        if obj_masks is not None:
            og3d_logits = og3d_logits.masked_fill_(obj_masks.logical_not(), -float('inf'))
        return og3d_logits
    
class T5(nn.Module):
    def __init__(self, variant='t5-small', input_size=768, use_projection=True, **kwargs):
        super().__init__()
        self.model = T5ForConditionalGeneration.from_pretrained(variant)
        self.model.config.update(kwargs)
        hidden_size = self.model.config.d_model
        self.use_projection = use_projection
        if use_projection:
            self.input_proj = nn.Sequential(nn.Linear(input_size, hidden_size), nn.LayerNorm(hidden_size))
        else:
            assert input_size == hidden_size, "input_feat_size should be equal to hidden_size!"

    def forward(self, query_embeds, attention_masks, labels=None):
        if self.use_projection:
            query_embeds = self.input_proj(query_embeds)

        if labels is not None:
            outputs = self.model(encoder_outputs=[query_embeds], attention_mask=attention_masks, labels=labels)
            outputs = outputs.logits
        else:
            outputs = self.model.generate(encoder_outputs=BaseModelOutput(last_hidden_state=query_embeds), attention_mask=attention_masks, do_sample=False)
            outputs = outputs[:, 1:] # remove the decoder start token for T5 generation output.
        return outputs

def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True,
                       spatial_dim=5):
    if pairwise_rel_type == 'mlp':
        obj_locs = torch.cat([obj_centers, obj_whls], 2)
        pairwise_locs = torch.cat(
            [einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)),
             einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))],
            dim=3
        )
        return pairwise_locs

    pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \
                    - einops.repeat(obj_centers, 'b l d -> b 1 l d')
    pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps)  # (b, l, l)
    if spatial_dist_norm:
        max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0]
        norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1')
    else:
        norm_pairwise_dists = pairwise_dists

    if spatial_dim == 1:
        return norm_pairwise_dists.unsqueeze(3)

    pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps)
    if pairwise_rel_type == 'center':
        pairwise_locs = torch.stack(
            [norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists,
             pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d,
             pairwise_locs[..., 0] / pairwise_dists_2d],
            dim=3
        )
    elif pairwise_rel_type == 'vertical_bottom':
        bottom_centers = torch.clone(obj_centers)
        bottom_centers[:, :, 2] -= obj_whls[:, :, 2]
        bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \
                               - einops.repeat(bottom_centers, 'b l d -> b 1 l d')
        bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps)  # (b, l, l)
        bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps)
        pairwise_locs = torch.stack(
            [norm_pairwise_dists,
             bottom_pairwise_locs[..., 2] / bottom_pairwise_dists,
             bottom_pairwise_dists_2d / bottom_pairwise_dists,
             pairwise_locs[..., 1] / pairwise_dists_2d,
             pairwise_locs[..., 0] / pairwise_dists_2d],
            dim=3
        )

    if spatial_dim == 4:
        pairwise_locs = pairwise_locs[..., 1:]
    return pairwise_locs

class Query3DUnified(torch.nn.Module):
    def __init__(self):
        super().__init__()
        # record parameters
        self.memories = ['mv', 'pc', 'voxel', 'prompt']
        self.heads = ['ground', 'generation']
        self.use_offline_voxel_fts = True
        self.use_offline_attn_mask = False
        self.inputs = self.memories[:]
        self.pairwise_rel_type = 'center'
        self.spatial_dim = 5
        self.num_heads = 12
        self.skip_query_encoder_mask_pred = True
        # build prompt type
        self.prompt_types = ['txt', 'loc']
        # build feature encoder
        self.txt_encoder = CLIPLanguageEncoder(use_projection=True, projection_type='mlp', num_projection_layers=1)
        self.mv_encoder = ObjectEncoder(input_feat_size=768, hidden_size=768, use_projection=True, dropout=0.1, use_cls_head=False)
        self.voxel_encoder = ObjectEncoder(input_feat_size=128,hidden_size=768, use_projection=True, dropout=0.1, use_cls_head=False)
        self.pc_encoder = ObjectEncoder(input_feat_size=768, hidden_size=768, dropout=0.1,use_cls_head=False)
        # build location encoder
        dim_loc = 6
        hidden_size = 768
        self.dim_loc = dim_loc
        self.hidden_size = hidden_size
        self.coord_encoder = nn.Sequential(
            nn.Linear(3, hidden_size),
            nn.LayerNorm(hidden_size),
        )
        self.box_encoder = nn.Sequential(
            nn.Linear(3, hidden_size),
            nn.LayerNorm(hidden_size),
        )
        # build unified encoder    
        self.unified_encoder = QueryMaskEncoder(hidden_size=768, num_attention_heads=12, num_layers=4, spatial_selfattn=True, memories=self.memories, drop_memories_test=[], memory_dropout=0.6, structure='mixed', use_self_mask=False, num_blocks=1)
        # build task head
        self.ground_head = GroundHead(hidden_size=384, input_size=768, dropout=0.3)
        self.generation_head = T5(variant='t5-small', input_size=768, use_projection=True, max_new_tokens=50)
        
    def prompt_encoder(self, data_dict):
        prompt = data_dict['prompt']
        prompt_pad_masks = data_dict['prompt_pad_masks']
        prompt_type = data_dict['prompt_type']
        prompt_feat = torch.zeros(prompt.shape + (self.hidden_size,), device=prompt.device)
        for type in self.prompt_types:
            # get idx
            idx = prompt_type == getattr(PromptType, type.upper())
            if idx.sum() == 0:
                continue
            input = prompt[idx]
            mask = prompt_pad_masks[idx]
            # encode
            if type == 'txt':
                encoder = self.txt_encoder
                feat = encoder(input.long(), mask)
            elif type == 'loc':
                loc_prompts = input[:, :self.dim_loc]
                if self.dim_loc > 3:
                    feat = self.coord_encoder(loc_prompts[:, :3]).unsqueeze(1) + self.box_encoder(loc_prompts[:, 3:6]).unsqueeze(1)
                mask[:, 1:] = False
            else:
                raise NotImplementedError(f'{type} is not implemented')
            # put back to orignal prompt
            prompt_feat[idx] = feat
            prompt_pad_masks[idx] = mask
        return prompt_feat, prompt_pad_masks.logical_not()
        
    def forward(self, data_dict):
        input_dict = {}
        # build query
        mask = data_dict['query_pad_masks'].logical_not()
        query_locs = data_dict['query_locs'][:, :, :self.dim_loc]
        if self.dim_loc > 3:
            query_pos  = self.coord_encoder(query_locs[:, :, :3]) + self.box_encoder(query_locs[:, :, 3:6])
        feat = torch.zeros_like(query_pos)
        pos = query_pos
        input_dict['query'] = (feat, mask, pos)
        # encode fts including point, voxel, image, and prompt
        # the semantics of the attention mask in pytorch (True as masked) is the opposite as Huggingface Transformers (False as masked)  
        fts_locs = data_dict['seg_center']
        if self.dim_loc > 3:
            fts_pos = self.coord_encoder(fts_locs[:, :, :3]) + self.box_encoder(fts_locs[:, :,  3:6])
        if self.dim_loc > 3:
            fts_pos += self.box_encoder(fts_locs[:, :, 3:6])
        for input in self.inputs:
            feat, mask, pos = None, None, None
            if input == 'prompt':
                feat, mask = self.prompt_encoder(data_dict)
            elif input == 'mv':
                feat = self.mv_encoder(obj_feats = data_dict['mv_seg_fts'])
                mask = data_dict['mv_seg_pad_masks'].logical_not()
                pos = fts_pos
            elif input == 'pc':
                feat = self.pc_encoder(obj_feats = data_dict['pc_seg_fts'])
                mask = data_dict['pc_seg_pad_masks'].logical_not()
                pos = fts_pos
            elif input == 'voxel':
                feat = self.voxel_encoder(data_dict['voxel_seg_fts'])
                mask = data_dict['voxel_seg_pad_masks'].logical_not()                
                pos = fts_pos
            else:
                raise NotImplementedError(f"Unknow input type: {input}")
            input_dict[input] = [feat, mask, pos]
        # build offline attention mask for guided mask training
        if self.use_offline_attn_mask:
            offline_attn_masks = data_dict['offline_attn_mask']
        else:
            offline_attn_masks = None
        mask_head_partial = None
        # generate features for spatial attention
        if self.unified_encoder.spatial_selfattn:
            pairwise_locs = calc_pairwise_locs(query_locs[:, :, :3], None, 
                                           pairwise_rel_type=self.pairwise_rel_type, spatial_dist_norm=True,
                                           spatial_dim=self.spatial_dim)
        else:
            pairwise_locs = None
            
        # unified encoding                           
        query, predictions_class, predictions_mask = self.unified_encoder(input_dict, pairwise_locs, mask_head_partial)
        
        # task head
        for head in self.heads:
            if head == 'ground':
                inputs = [query, data_dict['query_pad_masks']]
                logits = getattr(self, head + '_head')(*inputs)
                data_dict[head + '_logits'] = logits
                data_dict['og3d_logits'] = logits
            elif head == 'generation':
                inputs = [query, data_dict['query_pad_masks']] + [None]
                logits = getattr(self, head + '_head')(*inputs)
                data_dict[head + '_logits'] = logits
            else:
                raise NotImplementedError(f"Unknow head type: {head}")
       
        return data_dict